Consultar ensayos de calidad


La lÓgica, lÓgica formal y lÓgica material, objeto de estudio, la matemÁtica, el universo



La presente investigación se ha elaborado con la finalidad de ampliar el conocimiento y la cultura de estudiantes y profesores, sobre interrogantes que hemos dejado de lado, ante la incertidumbre de su respuesta.

Algunas de estas interrogantes, están expuestas a continuación; entre ellas: sQué es la lógica sQué es la matemática? y sQué es el universo?

En cuanto al tema, tal vez no sabemos cuándo fue que los seres humanos iniciamos la formulación de estas preguntas, pero sí, que miles de años atrás se estaban articulando las primeras respuestas a las mismas, que incluso hasta hoy son insatisfactorias.

O podemos decir con certeza que sla matemática es una ciencia sla lógica es sólo un tipo de lenguaje?, o sa qué llamamos universo?, estas y muchas cuestiones más se explican a continuación, ayudando así a que el lector extraiga sus propias conclusiones.



De modo que, en las siguientes páginas están expuestos los muchos intentos de matemáticos, filosóficos entre otros, entorno al tema. Siendo así, el documento un soporte original de información de primera mano.

LA LÓGICA

Un razonamiento correcto, ya sea en matemáticas, física o en la conversación casual, es válido en virtud de su forma lógica.
P.SUPPES

I. ETIMOLOGÍA
La palabra lógica deriva del griego antiguo
- ΛογικI® (logike): significa 'dotado de razón, intelectual, dialéctico, argumentativo', que a su vez viene de:
- λÏŒγος (logos): 'palabra, pensamiento, idea, argumento, razón o principio'.II. DEFINICIÓN
La lógica se constituye por primera vez como disciplina autónoma a partir de Aristóteles, quien la instauró como ciencia, elevándola al grado de saber supremo. Tal grado fue alcanzado debido a la importancia que se la atribuyó como método y herramienta indispensable en el manejo de procesos mentales. De ahí que se diga que el objeto sobre el cual trabaja la lógica, es el pensamiento y sus formas, es decir, la manera como la mente consigna y ordena los datos provenientes de la naturaleza. Posteriormente, dichos datos serán expresados de acuerdo con las reglas.

III. LÓGICA FORMAL Y LÓGICA MATERIAL
El pensamiento es un proceso por el cual el hombre capta la realidad a través de sus sentidos y obtiene una idea o conocimiento claro de los fenómenos al conformar una imagen de estos. En el pensamiento es posible distinguir dos tipos de contenidos, los materiales y los formales.

1. La lógica formal o pura, considera los contenidos materiales como entes lógicos abstractos, de tal manera que las leyes a aplicar tengan validez para cualquier contenido. La forma de un razonamiento correcto debe ser independiente de los objetos de que trate, así como también de las propiedades de esos objetos. Ejemplo: el concepto de montaña, casa, carro, árbol, etc.


2. La lógica material o aplicada, analiza los contenidos formales en consideración al contenido real de sus premisas. Por lo tanto debe conducir a una verdad material, es decir, una conclusión concordante con la realidad. En consecuencia, las leyes de la lógica formal solamente son aplicables en el campo delas ciencias puramente exactas y abstractas, tales como las matemáticas.

IV. LA LÓGICA DE ARISTÓTELES
Aristóteles fue el más grande pensador y filósofo de la antigua Grecia (Estagira, Macedonia 384 a.c - Calcis Eubea, Grecia 322 a.c). Él concibió la lógica como un instrumento de conocimiento, una disciplina de preparación para el mejor desenvolvimiento del resto de las ciencias, de allí el término propedéutica.



En consecuencia, la lógica no nos aporta información sobre le mundo y la realidad, pero sí constituye una herramienta muy eficaz para otras ciencias que nos proporcionan información sobre éste.

En su libro Organon, Aristóteles distinguía entre la dialéctica y la analítica. Según sus aportaciones, la dialéctica analiza las opiniones a partir de su plausibilidad, es decir, el grado de aceptación por la comunidad, derivando en el examen de su verdad o falsedad. En tanto que la analítica, trabaja de forma deductiva a partir de principios que descansan sobre la experiencia y una observación precisa.
V. PROBLEMÁTICA DE LA LÓGICA
Las principales cuestiones de la lógica se centran en las estructuras de pensamiento, así tenemos: el concepto, el juicio, el silogismo y el método.

El concepto (o clase) es una idea general y abstracta; una representación mental, intelectual, sensible, individual y concreta, sin ambigüedad. Este encierra únicamente lo esencial del fenómeno, teniendo como es natural, validez universal, al designar de una forma unitaria a una pluralidad de representaciones.

Si el concepto es la primera operación del entendimiento, el juicio (oproposición) es la segunda, por medio de la cual se compara dos conceptos. A partir esta comparación el entendimiento afirma o niega los elementos que determinan la relación de dos juicios, para inferir uno tercero, obteniéndose el razonamiento.

El razonamiento es un proceso de derivación, al cual, los antiguos lo llamaron inferencia; expresión derivada del latín, que significa “llegar a alguna parte”. Por lo tanto, no hay razonamiento sin inferencia.

Ejemplo


El conocimiento en general, se establece a partir de un encadenamiento de hechos. Se parte de una idea, de un concepto, se verifica en la experiencia, se razona, se piensa y se relaciona con otros hechos y de allí se infiere o se extrae algún resultado.
VI. OBJETO DE ESTUDIO
La lógica considerada una ciencia formal y una rama de la filosofía; tiene como objeto de estudio los procesos validos del razonamiento humano. Existen dos tipos importantes de razonamiento: el inductivo y el deductivo. El razonamiento inductivo es el medio por el cual una persona, en base a sus experiencias especificas, decide aceptar válido un principio general. El razonamiento deductivo es, en cambio, el medio según el cual dicha persona utiliza el principio general aceptado previamente para decidir sobre la validez de una idea, que a su vez habrá de determinar el curso de su acción.

El razonamiento deductivo es también llamado inferencia. La inferencia es un proceso mental que consiste en pasar de un conjunto de premisas a una conclusión.

Ejemplos
1. Los números pares son divisibles por dos. Diecisiete no es un númeropar. Por lo tanto, diecisiete no es divisible por dos.
2. Si Margarita llega temprano al colegio, entonces podrá entrar a clases de matemáticas. Pero Margarita no entra a clases de matemática. Luego, Margarita no llega temprano al colegio.
3. Si hay lluvias en la sierra entonces los ríos aumentan de caudal. Si los ríos aumentan de caudal se obtendrán buenas cosechas en la costa. En consecuencia, si hay lluvias en la sierra entonces se obtendrán buenas cosechas en la costa.

En cada uno de estos tres ejemplos podemos distinguir el conjunto de premisas de la conclusión mediante el uso de las palabras “por lo tanto”, “luego” y “en consecuencia” respectivamente, lo que significa que estas palabras u otras similares sirven de nexo o determinan el paso del conjunto de premisas a la conclusión.

Es por ello, que el tema de la lógica es la inferencia. Como la inferencia está constituida por un conjunto de oraciones o expresiones del lenguaje se llaman proposiciones, cuya propiedad esencial es de ser verdaderas o falsas, pero no ambas simultáneamente. Entonces, podemos decir que la inferencia es una estructura de proposiciones que consiste en pasar de un conjunto de proposiciones llamadas premisas a otra proporción que es la conclusión.

Básicamente uno de los objetivos de la lógica es distinguir la corrección de los razonamientos de aquellos que son incorrectos, en otros términos, distinguir cuando una inferencia es válida o cuando no es valida. Una inferencia es valida cuando la conclusión se deriva necesariamente del conjunto de premisas, en este caso, si el conjunto de premisas esverdadero, la conclusión que se deriva es necesariamente verdadera. En cambio, en una inferencia invalida, del conjunto de premisas no hay seguridad a qué conclusión podemos llegar.

Según el Profesor Moisés Chong, “la Lógica no se interesa por la existencia real del mundo, sino por la existencia formal de los modos como éste se manifiesta en la mente del hombre”.

En conclusión, la lógica es la ciencia que estudia los métodos, procedimientos o principios formales del conocimiento humano, para aplicar las definiciones, las leyes o reglas lógicas más generales del pensamiento humano considerado puramente en sí mismo, sin referencia a los objetos, en el análisis de validez de las inferencias.






LA MATEMÁTICA
Muchos piensan que las matemáticas constituyen un universo abstracto, extraño, lejano, patrimonio de unos pocos genios, un mundo alejado de la realidad social de cada época, cuyo desarrollo es independiente del devenir general de la historia. Nada mas lejos de la realidad, pues las grandes ideas matemáticas, ayudan al hombre a aprender, a conocer y dominar el universo que le rodea, pues al fin y al cabo eso es lo que significa la palabra griega matemática, aquello que se puede aprender.
Todas las cosas que pueden ser conocidas tienen número, pues no es posible que sin número nada pueda ser conocido ni concebido.
Filolao, puesto que para él y muchos matemáticos de su época los números son concebidos como entes abstractos como ideas de la mente, con existencia propia al margen de los objetos que representa.
Para los pitagóricos el número sagrado es el 10, eltetractis, ya que es la suma de todas las dimensiones el punto (1), la línea (2), el plano (3) y el espacio (4).

I. ETIMOLOGÍA

La palabra matemática deriva del griego antiguo:

-μI¬θημα (máthA“ma), que significa “campo de estudio o instrucción”.




El origen de las matemáticas se encuentra en el intento de dar respuestas a problemas prácticos, de hacer cálculos para controlar los impuestos y el comercio, comprender las relaciones entre los números, la medición de terrenos y la predicción de los eventos astronómicos.

Puede decirse que los primeros en desarrollar la matemática, tal como hoy la entendemos, fueron los griegos, entre quienes destaca Euclides. Su obra los Elementos, puede considerarse el primer escrito, donde se intenta la formulación axiomática de la geometría.






















































II. DEFINICIÓN
La matemática o “Reina de las ciencias”, (según Carl Friedrich Gauus), interpretando la palabra ciencia como campo de conocimiento, parte de los axiomas, siguiendo un razonamiento lógico, y estudia las propiedades y relaciones cuantitativas entre los entes abstractos o inmateriales, como pueden ser los números, las figuras geométricas, los símbolos, entre otros.
La ciencia se define como un conjunto de conocimientos obtenidos mediante la observación y el razonamiento, sistemáticamente estructurados y de los que se deducen principios y leyes generales; sin embargo al referirnos a la matemática, estamos diferenciando entre ciencia aplicada y ciencia pura.

La ciencia aplicada esla aplicación del conocimiento para resolver problemas prácticos. Estas áreas prácticas del saber son vitales generalmente como investigación y desarrollo. Su concepto opuesto es el de ciencia pura, considerada como una investigación científica que se realiza para aumentar el conocimiento, sin fin práctico inmediato, ejemplo de esta, es la matemática.

Ahora, si la matemática es ciencia, debemos distinguir entre los objetos y sus propiedades. Objeto no es necesariamente un ente material, puede considerarse también como tal, a un razonamiento, el espacio o un punto geométrico, o mejor dicho, un sistema de datos que se presentan en nuestra experiencia con cierta perdurabilidad a través del tiempo. Estos objetos forman parte de un conocimiento primitivo o intuitivo, cuyas propiedades se presentan en forma de proposiciones lógicas, llamados también postulados o teoremas





III. OPINIONES
“En el fondo, matemática es el nombre que le damos a la colección de todas las pautas e interrelaciones posibles.
Algunas de estas pautas son entre formas, otras en secuencias de números, en tanto que otras son relaciones más abstractas entre estructuras. La esencia de la matemática está en la relación entre cantidades y cualidades.”(John D. Barrow, 1999

“Los números, como otros objetos matemáticos, son construcciones mentales cuyas raíces se encuentran en la adaptación del cerebro humano a las regularidades del universo.” (Stanislas Dehaene, 1999
“Ciencia que trata de las relaciones entre cantidades y magnitudes y de las operaciones que permiten hallar alguna que se busca, conociendo otras.”(María Moliner, 1991












“Las matemáticas puras consisten enteramente en afirmaciones como la de que, si tal proposición es verdadera de algo, entonces tal otra proposición es verdadera de esa misma cosa. Es esencial no discutir si la primera proposición es o no es realmente verdadera, y no mencionar qué es el algo de lo que se supone que es verdadera Si nuestra hipótesis es sobre algo y no sobre cosas más concretas, entonces nuestras deducciones constituyen matemáticas. De ese modo, las matemáticas pueden definirse como la disciplina en la que nunca sabemos de lo que estamos hablando, ni si lo que estamos diciendo es verdad.”(Bertrand Russel)










IV. CONCEPTOS ERRADOS
El conocimiento de la Matemática está emparentado históricamente como una rama de la Física; pero actualmente, nosotros podemos hacer una distinción, puesto que la Fisica es una ciencia empírica, que necesariamente hace uso de la experimentación. Mientras que la matemática a través de las demostraciones obtienen conocimiento.

La deducción o demostración matemática es una sucesión coherente de procedimientos que, tomando como verdadero un conjunto de premisas llamado hipótesis, permitiendo asegurar la veracidad de su tesis o conclusión.

La matemática es también considerada como una simple extensión de los lenguajes naturales humanos, un conjunto de códigos que de manera más exacta describen relaciones conceptuales; sin embargo a través de varios estudios se ha llegado a la conclusión que el lenguaje ordinario (como el español), es una estructura de naturaleza totalmentedistinta al lenguaje formal (como la matemática).

















EL UNIVERSO

I. ETIMOLOGÍA
La palabra universo proviene del latín universus, resultado de la unión de:
-unus: uno, un integral que no admite división
-versus: girado o convertido

Desde que se consideró al Sistema Solar como el universo, en el siglo XVI, hasta ques e comprendión que éste está en otras regiones periféricas de una galaxia- La Vía Láctea-, pasaron 300 años. Y apenas unas cuantas décadas para entender que esta última tampoco el el universo, sino que éste está conformado por miles de millones d galaxias. Hoy sabemos que nuetro universo se expande acelradamente desde que nació a partir de una explsión formidable. También, cuando ocurrio eso, hace unos catorce mil millones años. (Alejandro Clocchiatti)

II. DEFINICIÓN

“El Universo es todo, sin excepciones”

El universo es algo difícil de definir, puesto que es ajeno a nuestras posibilidades de estudio, aunque podríamos considerarlo como la suma de todo lo existente, estudiado a nivel de origen, evolución y estructura por la cosmología.

La cosmología, basada principalmente en la física y en la astronomía, como ciencia sólo es capaz de elaborar teorías que describan o expliquen lo que tenga que ver con su objeto de estudio, el universo, pero a gran escala, pues le resulta imposible demostrar empíricamente (a partir de la experiencia) las verdades que le acontecen, principalmente porque sólo se conoce una parte del Universo, lo que llaman “el Universo Observable” que vendría siendo algo muy pequeño del Universo completo. La otra partees una masa oscura que conforma un 90% del todo.
Es por ello, que la cosmología considera al universo como un sistema realmente cerrado, talvez el único, un todo que no interactúa ni intercambia materia o energía con otro ente fuera de él. Y al hombre lo considera como un accidente biológico.

El universo está formado por toda la materia, energía y espacio que nos rodea, aunque realmente, sea en su mayor parte espacio vacío. Vacío porque la mayor parte de la materia es concentrada de manera uniforme en cúmulos de galaxias, materia intergaláctica, estrella y planetas, pero que no conocemos con exactitud a pesar de la avanzada tecnología de nuestros tiempos.
Nuestro lugar en este todo, es algo despreciable, puesto que nuestro planeta sólo forma parte del sistema solar, y este a su vez de una galaxia ínfima a comparación de miles de millones más.

III. OTRAS ACEPCIONES

En estadística, el universo hace referencia, a la totalidad de elementos, individuos y características de unidades de observación, que se someten al campo de estudio o investigación estadística.

En otras palabras, se refiere a una sociedad o parte de ella, caracterizada por alguna cualidad o circunstancia común a todos sus integrantes.

En matemática, podemos reconocer el término universo, conjunto universal, conjunto referencial o conjunto discurso, definido como aquel cuyo objeto de estudio son los subconjuntos del mismo, y denotado por las letras .
Por ejemplo, si se trata de conjuntos cuyos elementos son letras, el conjunto referencial sería el conjunto formado por todas las letras del alfabeto.CONCLUSIONES

a) Uno de los aspectos básicos en la matemática es definir los objetos con los que trabaja, sin embargo es más complicado definirla a ella.

b) La matemática es una ciencia pura, que estudia las relaciones de los entes abstractos a través de la intuición, concluyendo en teoremas o postulados de estos objetos.







REFERENCIAS BIBLIOGRÁFICAS

1) Oscar, trilles y Diógenes, Rosales.
(1988). Introducción a la lógica. Lima: Pontificia Universidad Católica del Perú.

2) Sixto, García y Diógenes, Rosales. (1994). Técnicas de Estudio. Lima: Impresos Bautista E.I.R.L.

3) Aurelio, Baldor. (1992). Aritmética Teórico Práctica. 7ma reimpresión. México: Publicaciones Cultural.

4) https://www.liceodigital.com/filosofia/aristoteles.htm

5) https://www.liceodigital.com/filosofia/logica.htm

6) https://www.memo.com.co/fenonino/aprenda/filosofia/filosofia06.html

7) https://es.wikipedia.org/wiki/Matem%C3%A1ticas[pic
----- ----- -------------




Política de privacidad