La cebada
Es una planta de la familia de las poaceas. Es un
cereal, al igual que el arroz, la importancia de la cebada en la agricultura ha
sido y sigue siendo enorme. Existen muchas variedades de
cebadas, las cuales presentan tallos huecos en forma de caña que nacen
de raíces fasciluladas. Al final de cada tallo,
se desarrolla una inflorescencia en forma de espiga donde donde se formaran los
granos.
Tipos de cebada:
*cebada de dos carreras o cervecera: es aquella en que, después de
madurar la espiga, queda solo la espiguilla central, es la mas antigua.
*cebada de seis carreras o caballar: es aquella que se
mantienen las tres espiguillas, son las modernas.
*cebada de cuatro carreras: es aquella que se mantiene las
dos espiguillas laterales después de desaparecer la central.
*cebada con la semilla protegida: son aquellas en que la
semilla esta cubierta por la lema y la palea, se utiliza para la
fabricación de la cerveza o en el consumo animal.
*cebada con la semilla desnuda:son aquellas en que la
semilla no esta cubierta por la lema y la palea, se utiliza en la
fabricación de productos del
consumo humano.
Orígenes
Los primeros restos arqueológicos del
uso de la cebada silvestre como
alimento humano se sitúan hace 21000 años en el poblado
neolítico de ohalo II. Los restos de este
desplazamiento muestran con claridad que la agricultura y la ganadería
se basan en el sustento de la cebada.
Usos:
*alimento o bebida para el hombre: se usa en la fabricación del pan,
solo o mezclado con otros cereales, también se pueden fabricar bebidas
alcohólicas como la cerveza, la malta, wiski, vino y sustituto del
café. También se obtiene el agua cebada.
*alimento para los animales: se utiliza directamente como grano,
constituye el cereal principal utilizado para alimentar animales.
*planta medicinal: se usa
en el tratamiento del
colesterol, diabetes dolor de vientre, diarrea, entre otros.
*planta de jardinería: algunas variedades de cebada se
usan en la jardinería. Cross-talk
nature, however, the plant encounters stress combinations concurrently or
separated temporally and must present an integrated response to them. In the case
of phytochrome signalling, the two pathways leading to red-light-induced CHS
and CAB gene expression negatively regulate flux through one another1,2.
Seemingly separate abiotic stress signalling pathways are also likely to
interact in a similar manner. In addition, several abiotic stress pathways
share common elementsthat are potential ‘nodes’ for cross-talk.
Cross-talk can also occur between pathways in different organs of the plant
when a systemic signal such as hydrogen peroxide moves from a stimulated cell
into another tissue to elicit a response3.
Specificity
When stress signalling pathways are examined in the laboratory, they are
usually considered in isolation from other stresses to simplify interpretation.
In
In spite of considerable overlap between many abiotic stress signalling
pathways, there might, in some instances, be a benefit to producing specific,
inducible and appropriate responses that result in a specific change suited to
the particular stress conditions encountered. One advantage would be to avoid
the high energy cost of producing stress-tolerance proteins, exemplified by the
dwarf phenotype of plants constitutively overexpressing the frost tolerance
protein DREB1A (Ref. 4). In some cases, the signal transduction pathways
triggered by different stresses are common to more than one stress type. One
possible reason for this is that, under certain conditions, the two stresses
cannot be distinguished from one another. Alternatively, each stress might
require the same protective action (or at least some common elements). The
discovery of separate sensing mechanisms for each stress would invalidate the
first suggestion but the second is true in several cases. For example,
dehydration protection is required in plants undergoing either freezing or
drought and the production of antioxidants and scavenging enzymes (e.g.catalase
and peroxidases) that protect against oxidative damage affords protection
against a variety of different abiotic (and biological) stresses5. Most abiotic
stresses tested have been shown to elicit rises in cytosolic free calcium
levels ([Ca2+]cyt) and to involve protein phosphatases and kinases [including
mitogen-activated protein kinase (MAPK) cascades]. However, are any of these
components truly specific to one stress and which of them are
‘nodes’ at which cross-talk occurs? In the following sections, we
consider different classes of signalling component in turn, and examine their
potential
https://plants.trends.com 1360-1385/01/$ – see front matter © 2001
Elsevier Science Ltd. All rights reserved. PII: S1360-1385(01)01946-X
Review
TRENDS in Plant Science Vol.6 No.6 June 2001
263
(a)
Stimulus 1 A B C D
Stimulus 2 W X Y Z Response
these molecules themselves have the potential to encode specificity of
response. An early event in the response to many different environmental
stresses is an elevation in [Ca2+]cyt (Refs 7,8), which is thought to be the
primary stimulus-sensing event for several stresses (e.g. cold)9–11. If
this is the case then mechanisms could exist for encoding the information that
relates to the particular stress through the calcium signature (see below).
Alternatively, the stress might be sensed through other components either in
parallel to or upstream of Ca2+ in the pathway. It has been postulated that
cold is sensed via changes in membrane fluidity12 and cytoskeletal
reorganization13affecting calcium channels.
(iii) Stimulus Stimulus A B +
(b) Stimulus
A
(i) Stimulus B
(ii) Stimulus Stimulus A B –
Calcium
(c)
(i) Stimulus 1
(ii) Stimulus 1 Stimulus 2
Signalling component
Response X
Response X
Response Y
TRENDS in Plant Science
Fig. 1. Cross-talk in signalling pathways. (a) Two different stimuli (1 and 2)
evoke the same end response via different signalling pathways, using different
signalling intermediates (A–D and W–Z, respectively). (b) Positive
and negative reciprocal control. Two different stimuli (A and B) activate two
signalling pathways (broken arrows), leading to different end responses. (i)
Pathways operating totally independently of each other. (ii) Flux through the
stimulus-A-mediated pathway negatively regulates the stimulus-B-mediated
pathway and inhibits its flux. An example of this is in phytochrome-mediated
expression of a chlorophyll a/b binding protein gene (CAB) and a chalcone
synthase gene (CHS) by independent pathways, each negatively regulati