1. Un CULTIVO PURO es aquel que contiene una sola
clase de microorganismos. Para obtenerlo es necesario recurrir a las llamadas técnicas de
aislamiento.
En esta practica emplearemos dos métodos para obtener un cultivo puro:
• Aislamiento por agotamiento por estrías
• Aislamiento por siembra de diluciones seriadas (que sera el
objeto de otra practica mas adelante).
• Agotamiento por estrías.
Se trata de un método rapido y simple de
agotamiento progresivo y continuo del
inóculo sobre un medio sólido contenido en una placa de Petri. El
objetivo es obtener, a partir de un elevado
número de bacterias, un número reducido de ellas distribuidas
individualmente sobre la superficie de la placa. Cada una de
estas bacterias originara una colonia.
La muestra debe diseminarse de manera tal que los
diferentes microorganismos queden lo suficientemente separados sobre la
superficie de un medio de cultivo sólido, de manera que luego de la
incubación ellos formen colonias visibles aisladas. Este proceso se
conoce como
aislamiento. En esta placa tendremosdiferentes tipos de
colonias correspondientes a los diferentes microorganismos presentes en la
población original.
Luego de tener las colonias aisladas, éstas deben transferirse con el
filamento a un tubo que contenga agar nutritivo
estéril para cultivar esa colonia aislada; este procedimiento se conoce como transplante.
4. Nutritivo Agar
Medio de cultivo utilizado para propósitos generales, para el aislamiento
de microorganismos poco exigentes en lo que se refiere a requerimientos
nutritivos.
Su uso esta descripto en muchos procedimientos
para el analisis de alimentos, aguas y otros materiales de importancia
sanitaria.
Fundamento
Por las características de sus componentes es un
medio usado para el cultivo de microorganismos poco exigentes en sus
requerimientos nutricionales. No contiene inhibidores del desarrollo
bacteriano. La pluripeptona es la fuente de carbono y nitrógeno para el
desarrollo bacteriano. El agregado de cloruro de sodio permite el
enriquecimiento con sangre de carnero u otras sustancias para facilitar el
cultivo de microorganismos exigentes. Cross-talk
nature, however, the plant encounters stress combinations concurrently or
separated temporally and must present an integrated response to them. In the case
of phytochrome signalling, the two pathways leading to red-light-induced CHS
and CAB gene expression negatively regulate flux through one another1,2.
Seemingly separate abiotic stress signalling pathways are also likely to
interact in a similar manner. In addition, several abiotic stress pathways
share common elementsthat are potential ‘nodes’ for cross-talk.
Cross-talk can also occur between pathways in different organs of the plant
when a systemic signal such as hydrogen peroxide moves from a stimulated cell
into another tissue to elicit a response3.
Specificity
When stress signalling pathways are examined in the laboratory, they are
usually considered in isolation from other stresses to simplify interpretation.
In
In spite of considerable overlap between many abiotic stress signalling
pathways, there might, in some instances, be a benefit to producing specific,
inducible and appropriate responses that result in a specific change suited to
the particular stress conditions encountered. One advantage would be to avoid
the high energy cost of producing stress-tolerance proteins, exemplified by the
dwarf phenotype of plants constitutively overexpressing the frost tolerance
protein DREB1A (Ref. 4). In some cases, the signal transduction pathways
triggered by different stresses are common to more than one stress type. One
possible reason for this is that, under certain conditions, the two stresses
cannot be distinguished from one another. Alternatively, each stress might
require the same protective action (or at least some common elements). The
discovery of separate sensing mechanisms for each stress would invalidate the
first suggestion but the second is true in several cases. For example,
dehydration protection is required in plants undergoing either freezing or
drought and the production of antioxidants and scavenging enzymes (e.g.catalase
and peroxidases) that protect against oxidative damage affords protection
against a variety of different abiotic (and biological) stresses5. Most abiotic
stresses tested have been shown to elicit rises in cytosolic free calcium
levels ([Ca2+]cyt) and to involve protein phosphatases and kinases [including
mitogen-activated protein kinase (MAPK) cascades]. However, are any of these
components truly specific to one stress and which of them are
‘nodes’ at which cross-talk occurs? In the following sections, we
consider different classes of signalling component in turn, and examine their
potential
https://plants.trends.com 1360-1385/01/$ – see front matter © 2001
Elsevier Science Ltd. All rights reserved. PII: S1360-1385(01)01946-X
Review
TRENDS in Plant Science Vol.6 No.6 June 2001
263
(a)
Stimulus 1 A B C D
Stimulus 2 W X Y Z Response
these molecules themselves have the potential to encode specificity of
response. An early event in the response to many different environmental
stresses is an elevation in [Ca2+]cyt (Refs 7,8), which is thought to be the
primary stimulus-sensing event for several stresses (e.g. cold)9–11. If
this is the case then mechanisms could exist for encoding the information that
relates to the particular stress through the calcium signature (see below).
Alternatively, the stress might be sensed through other components either in
parallel to or upstream of Ca2+ in the pathway. It has been postulated that
cold is sensed via changes in membrane fluidity12 and cytoskeletal
reorganization13affecting calcium channels.
(iii) Stimulus Stimulus A B +
(b) Stimulus
A
(i) Stimulus B
(ii) Stimulus Stimulus A B –
Calcium
(c)
(i) Stimulus 1
(ii) Stimulus 1 Stimulus 2
Signalling component
Response X
Response X
Response Y
TRENDS in Plant Science
Fig. 1. Cross-talk in signalling pathways. (a) Two different stimuli (1 and 2)
evoke the same end response via different signalling pathways, using different
signalling intermediates (A–D and W–Z, respectively). (b) Positive
and negative reciprocal control. Two different stimuli (A and B) activate two
signalling pathways (broken arrows), leading to different end responses. (i)
Pathways operating totally independently of each other. (ii) Flux through the
stimulus-A-mediated pathway negatively regulates the stimulus-B-mediated
pathway and inhibits its flux. An example of this is in phytochrome-mediated
expression of a chlorophyll a/b binding protein gene (CAB) and a chalcone
synthase gene (CHS) by independent pathways, each negatively regulati