Consultar ensayos de calidad


La estructura de las revoluciones - paradigmas y estructura comunitaria



Thomas Samuel Kuhn

Han transcurrido casi siete años desde la primera publicación de este libro.1 En el ínterin, tanto la respuesta de la crítica como mi propio trabajo nuevo han aumentado mi comprensión de un buen número de los asuntos en cuestión. En lo fundamental, mi punto de vista casi no ha cambiado, pero hoy reconozco aspectos de su formulación inicial que crean dificultades y equívocos gratuitos. Como algunos de esos equívocos han sido de mi propia cosecha, su eliminación me permite ganar un terreno que, a la postre, podrá constituir la base de una nueva versión del libro.2 Mientras tanto, aprovecho la oportunidad para esbozar algunas revisiones necesarias comentar algunas críticas reiteradas y esbozar las direcciones que hoy está siguiendo mi propio pensamiento.




Algunas de las principales dificultades de mi texto original se centran en el concepto de un paradigma, y mi análisis empieza con ellas.4 En la subsección que sigue, haré ver lo deseable de aislar tal concepto apartándolo de la noción de una comunidad científica, indico cómo puede hacerse esto y elucido algunas consecuencias considerables de la resultante separación analítica. Después considero lo que ocurre cuando se buscan paradigmas examinando el comportamiento de los miembros de una comunidad científica previamente determinada. Ese procedimiento revela, al punto, que en gran parte del libro me he valido del término “paradigma” en dos sentidos distintos. Por una parte, significa toda la constelación de creencias,valores, técnicas, etc., que comparten los miembros de una comunidad dada. Por otra parte, denota una especie de elemento de tal constelación, las concretas soluciones de problemas que, empleadas como modelos o ejemplos, pueden remplazar reglas explícitas como base de la solución de los restantes problemas de la ciencia normal. El primer sentido del término, al que podremos llamar sociólogo, es el tema de la subsección 2, más adelante; la subsección 3 está dedicada a los paradigmas como ejemplares logros del pasado.


Al menos en el aspecto filosófico este segundo sentido de “paradigma” es el más profundo de los dos, y las afirmaciones que he hecho en su nombre son las principales causas de las controversias y equívocos que ha producido el libro, particularmente la acusación de que yo he hecho de la ciencia una empresa subjetiva e irracional. Estos temas se consideran en las subsecciones 4 y 5. En la primera se sostiene que términos como “subjetivo” e “intuitivo” no pueden aplicarse con propiedad a los componentes del conocimiento que, según mi decisión, están tácitamente empotrados en ejemplos compartidos. Aunque tal conocimiento no está sujeto a la paráfrasis —sin cambios esenciales; por lo que respecta a reglas y cánones, sin embargo resulta sistemático, ha resistido el paso del tiempo, y en cierto sentido es corregible. La subsección 5 aplica tal argumento al problema de elección entre dos teorías incompatibles, y pide, en breve conclusión, que quienes sostienen puntos de vista inconmensurables sean considerados como miembros de diferentescomunidades lingüísticas, y que sus problemas de comunicación sean analizados como problemas de traducción. Los asuntos restantes se analizan en las siguientes subsecciones 6 y 7. La primera considera la acusación de que el concepto de ciencia desarrollado en este libro es integralmente relativista. La segunda comienza preguntando si mi argumento realmente adolece, como se ha dicho, de una confusión entre los modos descriptivo y normativo; concluye con unas breves observaciones sobre un tema que merece un ensayo aparte: el grado en que las principales tesis del libro pueden aplicarse legítimamente a otros campos, aparte de la ciencia.


1. Paradigmas y estructura comunitaria
El término “paradigma” aparece pronto en las páginas anteriores, y es, intrínsecamente, circular. Un paradigma es lo que comparten los miembros de una comunidad científica y, a la inversa una comunidad científica consiste en unas personas que comparten un paradigma. No todas las circularidades son viciosas (defenderé más adelante, en este escrito, un argumento de estructura similar), pero ésta es causa de verdaderas dificultades. Las comunidades científicas pueden aislarse sin recurrir previamente a paradigmas; éstos pueden ser descubiertos, entonces, analizando el comportamiento de los miembros de una comunidad dada. Si estuviera reescribiendo este libro, por lo tanto, empezaría con un análisis de la estructura comunitaria de la ciencia, tema que recientemente se ha convertido en importante objeto de la investigación sociológica, y que también empiezan a tomar en serio loshistoriadores de la ciencia. Los resultados preliminares, muchos de ellos aún inéditos, indican que las técnicas empíricas necesarias para su exploración son no-triviales, pero algunas están en embrión y otros seguramente se desarrollarán.5 La mayoría de los científicos en funciones responden inmediatamente a las preguntas acerca de sus afiliaciones comunitarias, dando por sentado que la responsabilidad por las varias especialidades actuales está distribuida entre grupos de un número de miembros al menos generalmente determinado. Por tanto, supondré aquí que ya se encontrarán medios más sistemáticos para su identificación. En lugar de presentar los resultados de la investigación preliminar, permítaseme explicar brevemente la noción intuitiva de comunidad, subyacente en gran parte de los capítulos anteriores de este libro. Es una idea que comparten extensamente científicos, sociólogos y numerosos historiadores de la ciencia.


Según esta opinión, una comunidad científica consiste en quienes practican una especialidad científica. Hasta un grado no igualado en la mayoría de los otros ámbitos, han tenido una educación y una iniciación profesional similares. En el proceso, han absorbido la misma bibliografía técnica y sacado muchas lecciones idénticas de ella. Habitualmente los límites de esa bibliografía general constituyen las fronteras de un tema científico, y cada unidad habitualmente tiene un tema propio. En las ciencias hay escuelas, es decir, comunidades que enfocan el mismo tema desde puntos de vista incompatibles. Pero aquí son mucho másescasas que en otros campos. Siempre están en competencia, y su competencia, por lo general termina pronto; como resultado, los miembros de una comunidad científica se ven a sí mismos, y son considerados por otros como los hombres exclusivamente responsables de la investigación de todo un conjunto de objetivos comunes, que incluyen la preparación de su propios sucesores. Dentro de tales grupos, la comunicación es casi plena, y el juicio profesional es, relativamente, unánime. Como, por otra parte, la atención de diferentes comunidades científicas enfoca diferentes problemas, la comunicación profesional entre los límites de los grupos a veces es ardua, a menudo resulta en equívocos, y de seguir adelante, puede conducir a un considerable y antes insospechado desacuerdo.


En ese sentido, las comunidades, desde luego, existen en muchos niveles. La más global es la comunidad de todos los científicos naturalistas. A un nivel apenas inferior, los principales grupos de científicos profesionales son comunidades: médicos, químicos, astrónomos, zoólogos y similares. Para estos grandes grupos, la pertenencia a una comunidad queda inmediatamente establecida, excepto en sus límites. Temas de la mayor dificultad, afiliación a las sociedades profesionales y publicaciones leídas son, por lo general, más que suficientes. Las técnicas similares también pueden aislar a los principales subgrupos: químicos orgánicos, quizás los químicos de las proteínas entre ellos, físicos especializados en transistores, radio astrónomos, etc. Sólo es en el siguiente nivelinferior donde surgen problemas empíricos. Para tomar un ejemplo contemporáneo, scómo se habría podido aislar el grupo “fago”, antes de ser aclamado por el público? Con este fin se debe asistir a conferencias especiales, se debe recurrir a la distribución de manuscritos o galeras antes de su publicación y ante todo, a las redes oficiales o extraoficiales de comunicación, incluso las que hayan sido descubiertas en la correspondencia y en los nexos establecidos entre las referencias.6 Yo sostengo que esa labor puede y debe hacerse, al menos en el escenario contemporáneo, y en las partes más recientes del escenario histórico. Lo característico es que ofrezca comunidades hasta, quizá, de cien miembros, ocasionalmente bastante menos. Por lo general los científicos individuales, particularmente los más capaces, pertenecerán a varios de tales grupos, se simultáneamente, sea sucesión.


Las comunidades de esta índole son las unidades que este libro ha presentado como productoras y validadoras del conocimiento científico. A veces los paradigmas son compartidos por miembros de tales grupos. Si no se hace referencia a la naturaleza de estos elementos compartidos, muchos aspectos de la ciencia descritos en las páginas anteriores difícilmente se podrán entender. Pero otros aspectos sí, aunque no hayan sido presentados independientemente en mi texto original. Por tanto, vale la pena notar, antes de volverse directamente a los paradigmas, una serie de asuntos que requieren su referencia a la estructura de la comunidad, exclusivamente.
Probablemente el más notablede éstos es lo que antes he llamado la transición del periodo pre-paradigma al post-paradigma en el desarrollo de un campo científico. Tal transición es la que fue esbozada antes, en la que fue esboza antes, en la Sección II. Antes de que ocurra, un buen número de escuelas estarán compitiendo por el dominio de un ámbito dado. Después, en la secuela de algún notable logro científico, el número de escuelas se reduce grandemente, ordinariamente a una, y comienza entonces un modo más eficiente de práctica científica. Este último generalmente es esotérico, orientado hacia la solución de enigmas, como el trabajo de un grupo puede ser cuando sus miembros dan por sentadas las bases de su estudio.
La naturaleza de esa transición a la madurez merece un análisis más completo del que ha recibido en este libro, particularmente de aquellos interesados en el avance de las ciencias sociales contemporáneas. Con ese fin puede ser útil indicar que la transición no tiene que estar asociada (ahora creo que no debe estarlo) con la primera adquisición de un paradigma. Los miembros de todas las comunidades científicas, incluso de las escuelas del periodo “preparadigma” comparten las clases de elementos que, colectivamente, he llamado un “paradigma”. Lo que cambia con la transición a la madurez no es la presencia de un paradigma, sino, antes bien, su naturaleza. Sólo después del cambio es posible una investigación normal de la solución de enigmas. Muchos de los atributos de una ciencia desarrollada, que antes he asociado con la adquisición de un paradigma, seránconsiderados, por tanto, como consecuencias de la adquisición de la clase de paradigmas que identifica los enigmas más intrigantes, que aporta claves para su solución y que garantiza el triunfo del practicante verdaderamente capaz. Sólo quienes han cobrado ánimo observando que su propio campo (o escuela) tiene paradigmas sentirán, probablemente, que el cambio sacrifica algo importante.


Un segundo asunto, más importante al menos para los historiadores, implica la identificación hecha en este libro, de las comunidades científicas, una a una, con las materias científicas. Es decir, repetidamente he actuado como si, por ejemplo, la “óptica física”, la “electricidad” y el “calor” debieran señalar comunidades científicas porque designan materias de investigación. La única alternativa que mi texto ha parecido dejar consiste en que todos estos temas han pertenecido a la comunidad científica. Sin embargo, las identificaciones de tal índoles no resisten un examen, como repetidas veces lo han señalado mis colegas en materia de historia. Por ejemplo, no hubo una comunidad de físicos antes de mediados del siglo XIX, y entonces fue formada por una amalgamación de partes de dos comunidades antes separadas: las matemáticas y la filosofía natural (physique expérimentale). Lo que hoy es materia para una sola extensa comunidad ha estado distribuido de varios modos, en el pasado, entre diversas comunidades. Otros temas de estudio más reducidos, por ejemplo el calor y la teoría de la materia, han existido durante largos periodos sin llegar a convertirse en campoexclusivo de ninguna comunidad científica en especial. Sin embargo, tanto la ciencia normal como las revoluciones son actividades basadas en comunidades. Para descubrirlas y analizarlas es preciso desentrañar la cambiante estructura de las ciencias con el paso del tiempo. En primer lugar, un paradigma no gobierna un tema de estudio, sino, antes bien, un grupo de practicantes. Todo estudio de una investigación dirigida a los paradigmas o a destruir paradigmas debe comenzar por localizar al grupo o los grupos responsables.
Cuando se enfoca de este modo el análisis del desarrollo científico, es probable que se desvanezcan algunas dificultades que habían sido focos de la atención de los críticos. Por ejemplo, un gran número de comentadores se han valido de la teoría de la materia para indicar que yo exageré radicalmente la unanimidad de los científicos en su fe en un paradigma. Hasta hace poco, señalan, esas teorías habían sido materia de continuo desacuerdo y debate, Yo convengo con la descripción, pero no creo que sea un ejemplo de lo contrario. Al menos hasta 1920, las teorías de la materia no fueron dominio especial ni objeto de estudio de ninguna comunidad científica. En cambio, fueron útiles de un buen número de grupos de especialistas. Los miembros de diferentes comunidades científicas a veces escogen útiles distintos y critican la elección hecha por otros. Algo aún más importante: una teoría de la materia no es la clase de tema en que los miembros siquiera de una sola comunidad necesariamente deben convenir. La necesidad de un acuerdodepende de lo que hace la comunidad. La química de la primera mitad del siglo XIX resulta un caso oportuno. Aunque varios de los útiles fundamentales de la comunidad —proporción constante, proporción múltiple y pesos combinados— se han vuelto del dominio público de la teoría atómica de Dalton, era absolutamente posible que los químicos, ante el hecho consumado, basaran su labor en aquellos útiles y expresaran su desacuerdo, a veces con vehemencia, con respecto a la existencia de los átomos.
Creo que de la misma manera podrán disiparse algunas otras dificultades y equívocos. En parte a causa de los ejemplos que he escogido y en parte a causa de mi vaguedad con respecto a la naturaleza y las proporciones de las comunidades en cuestión, unos cuantos lectores de este libro han concluido que mi interés se basa fundamental y exclusivamente en las grandes revoluciones, como las que suelen asociarse a los nombres de Copérnico. Newton, Darwin o Einstein. Sin embargo, yo creo que un delineación más clara de la estructura comunitaria ayudaría a iluminar la impresión bastante distinta que yo he querido crear. Para mí, una revolución es una clase especial de cambio, que abarca cierta índole de reconstrucción de los compromisos de cada grupo. Pero no tiene que ser un gran cambio, ni siquiera parecer un cambio revolucionario a quienes se hallen fuera de una comunidad determinada, que acaso no consiste más que en unas veinticinco personas. Y simplemente porque este tipo de cambio, poco reconocido o analizado en la bibliografía de la filosofía de la ciencia,ocurre tan regularmente en esta escala menor, es tan urgente comprender el cambio revolucionario, en contraste con el acumulativo.
Una última alteración, íntimamente relacionada con la anterior, puede ayudarnos a hacer más fácil esa comprensión. Un buen número de críticos han dudado de que una crisis, la observación común de que algo anda mal, preceda tan invariablemente las revoluciones como yo lo he dicho, implícitamente, en mi texto original. Sin embargo, nada de importancia en mi argumento depende de que las crisis sean un requisito absoluto para la revolución. Tan solo necesitan ser el preludio habitual, que aporta, por decirlo así, un mecanismo de auto-correción que asegure que la rigidez de la ciencia normal diga indefinidamente sin ser puesta en duda. También pueden inducirse de otras maneras las revoluciones, aunque creo que ello ocurra raras veces. Además, deseo señalar ahora lo que ha quedado oscurecido antes por falta de un adecuado análisis de la estructura comunitaria: las crisis no tienen que ser generadas por la labor de la comunidad que las experimenta y que a veces, como resultado, pasa por una revolución. Nuevos instrumentos como el microscopio electrónico o leyes nuevas como la de Maxwell pueden desarrollarse en una especialidad, y su asimilación puede crear crisis en otras.


2. Los paradigmas como constelación de compromisos del grupo
Volvámonos ahora a los paradigmas y preguntemos que pueden ser. Mi texto original no deja ninguna cuestión más oscura o más importante. Un lector
partidario de mis ideas, quien comparte miconvicción de que “paradigma” indica los elementos filosóficos centrales del libro, ha preparado un índice analítico parcial, y ha concluido que el término ha sido aplicado al menos de veintidós modos distintos.7 Creo ahora que la mayor parte de esas diferencias se deben a incongruencias de estilo (por ejemplo, las leyes de Newton a veces son un paradigma, a veces partes de un paradigma y a veces son paradigmáticas), y pueden ser eliminadas con relativa facilidad. Pero, una vez hecha tal labor de corrección, aún quedarían dos usos muy distintos del término, que requieren una completa separación. El uso más global es el tema de esta subsección; el otro será considerado en la siguiente.
Habiendo aislado una particular comunidad de especialistas mediante técnicas como las que acabamos de analizar, resultaría útil plantearse la siguiente pregunta: squé comparten sus miembros que explique la relativa plenitud de su comunicación profesional y la relativa unanimidad de sus juicios profesionales? A esta pregunta mi texto original responde un paradigma o conjunto de paradigmas. Pero para el caso, a diferencia del que hemos visto antes, el término resulta inapropiado. Los propios científicos dirían que comparten una teoría o conjunto de teorías, y yo quedaré satisfecho si el término, a fin de cuentas, puede volver a aplicarse para ese uso. Sin embargo, tal como se emplea en la filosofía de la ciencia el término “teoría” da a entender una estructura mucho más limitada en naturaleza y dimensiones de la que requerimos aquí. Mientras el término no quedelibre de sus actuales implicaciones, resultará útil adoptar otro, para evitar confusiones. Para nuestros propósitos presentes sugiero “matriz disciplinaria”: “disciplinaria” porque se refiere a la posesión común de quienes practican una disciplina particular; “matriz” porque está compuesta por elementos ordenados de varias índoles, cada uno de los cuales requiere una ulterior especificación. Todos o la mayor parte de los objetos de los compromisos de grupo que en mi texto original resultan paradigmas o partes de paradigmas, o paradigmáticos, son partes constituyentes de la matriz disciplinaria, y como tales forman un todo y funcionan en conjunto.
No obstante lo anterior, no se les debe analizar como si fueran todos de una sola pieza. No intentaré esbozar una lista completa, pero haré notar cuáles son las principales clases de componentes de una matriz disciplinaria y aclararé así tanto la naturaleza de mi actual enfoque, lo que no preparará, simultáneamente, para mi siguiente argumento importante.
Una clase importante de componente al que llamaré “generalizaciones simbólicas”, teniendo en mente tales expresiones, desplegadas sin duda ni disensión por unos miembros del grupo, fácilmente puede presentarse en una forma lógica como (x) (y) (z) (x, y, z). Tales son los componentes formales, o fácilmente formalizables, de la matriz disciplinaria. En algunas ocasiones ya se les encuentra en una forma simbólica: f = ma o I= V/R. Otras habitualmente se expresan en palabras: “los elementos se combinan en proporción constante por el peso” o “acciónigual reacción”. De no ser por la aceptación general de expresiones como éstas, no habría puntos en que los miembros del grupo pudieran basar las poderosas técnicas de la manipulación lógica y matemática en su empresa de solución de problemas. Aunque el ejemplo de la taxonomía parece indicar que la ciencia normal puede proceder con pocas expresiones semejantes, el poder de una ciencia, generalmente, parece aumentar con el número de generalizaciones simbólicas que tienen a su disposición quienes la practican.
Estas generalizaciones parecen leyes de la naturaleza, pero para los miembros del grupo, su función a menudo, no tan sólo ésa. Es a veces, por ejemplo, la ley de Joule-Lenz, H= RI2 . Cuando se descubrió esa ley, los miembros de la comunidad ya sabían lo que representaban H , R e I; estas generalizaciones simplemente les enseñaban algo acerca de cómo proceden el calor, la corriente y la resistencia, algo que no habían sabido antes. Pero más a menudo, como lo indica un análisis anterior de este mismo libro, las generalizaciones simbólicas, simultáneamente, sirven a una segunda función, que habitualmente es claramente separada en los análisis de los filósofos de la ciencia. Así, f = ma, o IV/R, funcionan en parte como leyes, pero también en parte como definiciones de algunos de los símbolos que muestran. A mayor abundamiento, el equilibrio entre su inseparable fuerza legislativa y definidora cambia con el tiempo. En otro contexto, estos argumentos valdrían la pena de hacer un análisis detallado, pues la naturaleza del compromiso con una ley esmuy distinta de la del compromiso con una definición. A menudo las leyes pueden corregirse parte por parte, pero las definiciones, al ser tautologías, no se pueden corregir. Por ejemplo, una parte de lo que exigía la aceptación de la Ley de Ohm era una redefinición tanto de “corriente” como de “resistencia”; si tales términos hubieran seguido significando lo que antes significaban, la Ley de Ohm no habría podido ser cierta; tal es la razón por la que encontró una oposición tan enconada, a diferencia de la Ley de Joule-Lenz.8 Probablemente tal situación es característica. Ahora yo sospecho que todas las revoluciones, entre otras cosas, implican el abandono de generalizaciones cuya fuerza, previamente, había sido la fuerza de las tautologías. sDemostró Einstein que la simultaneidad era relativa, o bien alteró la propia noción de simultaneidad? sSimplemente estaban equivocados encontraron una paradoja en la frase “relatividad de la simultaneidad”?
Consideremos ahora un segundo tipo de componentes de la matriz disciplinaria, componente acerca del cual se ha dicho ya bastante en mi texto original, bajo títulos como el de “paradigma metafísico” o “las partes metafísicas de los paradigmas”. Estoy pensando en compromisos compartidos con creencias tales como: el calor es la energía Kinética de las partes constituyentes de los cuerpos; todos los fenómenos perceptibles se deben a la interacción de átomos cualitativamente neutrales en el vacío o bien, en cambio, a la materia y la fuerza, o a los campos. Al reescribir el libro describiría yo ahora talescompromisos como creencias en modelos particulares, y extendería los modelos de categorías para que también incluyeran una variedad relativamente heurística: el circuito eléctrico puede ser considerado como un sistema hidrodinámico de estado estacionario; las moléculas de un gas actúan como minúsculas bolas de billar, elásticas, en un movimiento producido al azar. Aunque varia la fuerza de los compromisos del grupo, con consecuencias no triviales, a lo largo del espectro de los modelos heurístico a ontológico, sin embargo todos los modelos tienen funciones similares. Entre otras cosas, dan al grupo sus analogías y metáforas preferidas o permisibles. Y al hacer esto ayudan a determinar lo que será aceptado como explicación y como solución de problemas; a la inversa, ayudan en la determinación de la lista de enigmas no resueltos y en la evaluación de la importancia de cada uno. Sin embargo, obsérvese que los miembros de las comunidades científicas acaso no compartan ni siquiera los modelos heurísticos, aunque habitualmente sí lo hacen. Ya he indicado que durante la primera parte del siglo XIX se podía pertenecer a la comunidad de los químicos sin creer por ello, necesariamente, en los átomos.
Ahora describiré aquí como valores a una tercera clase de elementos de la matriz disciplinaria. Habitualmente se les comparte entre diferentes comunidades, más generalmente que las generalizaciones simbólicas o los modelos, y hacen mucho para dar un sentido de comunidad a los científicos naturalistas en conjunto. Aunque funcionan en todo momento, suimportancia particular surge cuando los miembros de una comunidad particular deben identificar una crisis o, después, escoger entre formas incompatibles de practicar su disciplina. Probablemente los valores más profundamente sostenidos se refieren a las predicciones: deben ser exactas; las predicciones cuantitativas son preferibles a las cualitativas; sea cual fuere el margen del error admisible, debe ser continuamente respetado en un campo determinado, y así por el estilo. Sin embargo, también hay valores que deben aplicarse al juzgar teorías enteras: antes que nada, deben permitir la formulación y solución de enigmas; cuando sea posible deben ser sencillas, coherentes y probables, es decir, compatibles con otras teorías habitualmente sostenidas. (Considero ahora como una flaqueza de mi texto original el haber prestado poca atención a valores tales como la coherencia interna y externa al considerar las causas de crisis y factores de elección de teorías). También existen otras clases de valores, por ejemplo, la ciencia deber ser (o no tiene que serlo necesariamente) útil para la sociedad, pero lo anterior indica aquello que tengo en mente.
Sin embargo, un aspecto de los valores compartidos requiere en este punto una mención particular. En un grado más considerable que otras clases de componentes de la matriz disciplinaria, los valores deben ser compartidos por personas que difieren en su aplicación. Los juicios de precisión y exactitud son relativamente estables, aunque no enteramente, de una vez a otra y de un miembro a otro en un grupoparticular. Pero los juicios de sencillez, coherencia, probabilidad y similares a menudo varían grandemente de individuo a individuo. Lo que para Einstein resultaba una incoherencia insoportable en la antigua teoría de los quanta, incoherencia tal que hacía imposible la investigación de una ciencia normal, fue para Bohr y para otros sólo una dificultad que, por los medios normales, podía resolverse. Algo más importante aún: en aquellas situaciones en que hay que aplicar valores, los diferentes valores, tomados por separado, a menudo obligarán a hacer diferentes elecciones. Una teoría puede resultar más precisa pero menos coherente o probable que otra; asimismo, la antigua teoría de los quanta nos ofrece un ejemplo. En suma, aunque los valores sean generalmente compartidos por los hombres de ciencia y aunque el compromiso con ellos sean a la vez profundo y constitutivo de la ciencia, la aplicación de valores a menudo se ve considerablemente afectada por los rasgos de la personalidad individual que diferencia a los miembros del grupo.
Para muchos lectores de los anteriores capítulos, esta característica de la operación de los valores compartidos ha parecido una considerable flaqueza de la posición que he adoptado. Como insisto en que aquello que comparten los hombres de ciencia no es suficiente para imponer un acuerdo uniforme acerca de cuestiones tales como la opción entre teorías competitivas o la distinción entre una anomalía ordinaria y otra que provoca crisis, ocasionalmente se me ha acusado de glorificar la subjetividad y aun lairracionalidad.9 Pero tal reacción ha pasado por alto dos características que muestran los juicios de valor en cualquier campo. En primer lugar, los valores compartidos pueden ser importantes y determinantes del comportamiento del grupo, aun cuando los miembros del grupo no los apliquen todos de la misma manera. (Si tal no fuera caso, no habría especiales problemas filosóficas acerca de la teoría del valor o la estética). No todos los hombres pintaron de la misma manera durante los periodos en que la representación era un valor primario, pero la pauta de desarrollo de las artes plásticas cambió radicalmente al ser abandonado tal valor.10 Imagínese lo que ocurrirá en las ciencias si la coherencia dejase de ser un valor fundamental. En segundo lugar, la variabilidad individual en la aplicación de los valores compartidos puede servir a funciones esenciales para la ciencia. Los puntos en que deben aplicarse los valores son invariablemente aquellos en que deben correrse riesgos. La mayor parte de las anomalías se resuelve por medios normales; la mayoría de las proposiciones de nuevas teorías resultan erróneas. Si todos los miembros de una comunidad respondiesen a cada anomalía como causa de crisis o abrazaran cada nueva teoría propuesta por un colega, la ciencia dejaría de existir. En cambio, si nadie reaccionara a las anomalías o a las flamantes teorías de tal manera que se corrieran grandes riesgos, habría pocas o ninguna revoluciones. En asuntos como estos el recurrir a los valores compartidos, antes que a las reglas compartidas que gobiernan la elecciónindividual, puede ser el medio del que se vale la comunidad para distribuir los riesgos y asegurar, a la larga, el éxito de su empresa.
Volvámonos ahora a una cuarta especie de elemento de la matriz disciplinaria, no la única restante, pero sí la última que analizaré aquí. Para ella resultaría perfectamente el término “paradigma” tanto en la filológico como en lo autobiográfico; se trata del componente de los compromisos compartidos por un grupo, que inicialmente me llevaron a elegir tal palabra. Sin embargo, como el término ha cobrado una vida propia, lo sustituiré aquí por “ejemplares”. Con él quiero decir, inicialmente, las concretas soluciones de problemas que los estudiantes encuentran desde el principio de su educación científica, sea en los laboratorios, en los exámenes, o al final de los capítulos de los textos de ciencia. Sin embargo, a estos ejemplos compartidos deben añadirse al menos algunas de las soluciones de problemas técnicos que hay en la bibliografía periódica que los hombres de ciencia encuentran durante su carrera de investigación post-estudiantil, y que también les enseñan mediante el ejemplo, cómo deben realizar su tarea. Más que otras clases de componente de la matriz disciplinaria, las diferencias entre conjuntos de ejemplares dan a la comunidad una finísima estructura de la ciencia. Por ejemplo, todos los físicos empiezan aprendiendo los mismos ejemplares: problemas tales como el plano inclinado, el péndulo cónico y las órbitas keplerianas, instrumentos como el vernier, el calorímetro y el puente de Wheatstone. Sinembargo, al avanzar su preparación, las generalizaciones simbólicas que comparten se ven ilustradas cada vez más a menudo por diferentes ejemplares. Aunque tanto los físicos especializados en transistores como los físicos teóricos de un campo comparten y aceptan la ecuación de Schrödinger, tan solo sus aplicaciones más elementales son comunes a ambos grupos.
3. Los paradigmas como ejemplos compartidos
El paradigma como ejemplo compartido es el elemento central de lo que hoy considera como el aspecto más novedoso y menos comprendido de este libro. Por lo tanto, sus ejemplares requieren más atención que las otras clases de componentes de la matriz disciplinaria. Los filósofos de la ciencia habitualmente no han elucidado los problemas que encuentra el estudiante en los laboratorios o en los textos de ciencia, pues se supone que éstos tan solo aportan una práctica en la aplicación de aquello que ya sabe el estudiante. Se dice que no puede resolver problemas a menos que ya conozca la teoría y algunas reglas para su aplicación. El conocimiento científico se halla como empotrado en la teoría y la regla; se ofrecen problemas para darle facilidad a su aplicación. Sin embargo. yo he tratado de sostener que esta localización del conocimiento cognoscitivo de la ciencia es un error. Después que el estudiante ha resuelto muchos problemas, tan solo podrá lograr más facilidad si resuelve más aún. Pero al principio y durante cierto tiempo, resolver problemas es aprender cosas consecutivas acerca de la naturaleza. A falta de tales ejemplares, las leyes yteorías que previamente haya aprendido tendrán muy escaso contenido empírico.
Para indicar lo que tengo en mente volveré por un momento a las generalizaciones simbólicas. Un ejemplo muy extensamente compartido es la Segunda Ley del Movimiento, de Newton, generalmente escrita como f = ma . Los sociólogos, por ejemplo, o los lingüistas que descubren que la expresión correspondiente ha sido preferida y recibida sin problemas por los miembros de una comunidad dada, no habrán aprendido mucho, sin gran investigación adicional, acerca de lo que significa la expresión o los términos que la forman, acerca de cómo los científicos de la comunidad relacionan la expresión con la naturaleza. En realidad, el hecho de que la acepten sin ponerla en tela de duda y que la utilicen en un punto en el cual introducen la manipulación lógica y matemática, no implica por sí mismo que todos convengan en cosas tales como significado y aplicación. Desde luego, convienen hasta un grado considerable, o el hecho rápidamente saldría a la luz a partir de sus subsiguientes conversaciones. Pero bien podemos preguntar en qué punto y por qué medio han llegado a ello. sCómo han aprendido, ante una situación experimental dada, a escoger las fuerzas, masas y aceleraciones pertinentes?
En la práctica, aunque este aspecto de la situación pocas veces o nunca se nota, lo que los estudiantes tienen que aprender es aún más complejo que todo eso. No es exactamente que la manipulación lógica y matemática se aplique directamente a f= ma. Una vez examinada, la expresión resulta un esbozo deley o un esquema de ley. Cuando el estudiante o el científico practicante pasa de una situación problemática a la siguiente, cambia la generalización simbólica a la que se aplican tales manipulaciones. Para el caso de la caída libre, f= ma se convierte en mg = m(d2s/dt2); para el péndulo simple se transforma en mg sen ï
±= - ml (d2ï±ï€¯dt2 ); para una pareja de osciladores armónicos que actúan uno sobre otro se convierte en dos ecuaciones, la primera de las cuales puede escribirse así: m1 (d2 s1/dt2) + k1s1 = k2 (s2 - s1 = d); y para situaciones más complejas, tales como las del giroscopio, toma otras formas, cuyo parecido familiar con f=ma es todavía más difícil de descubrir. Sin embargo, mientras aprende a identificar fuerzas, masas y aceleraciones en toda una variedad de situaciones físicas nunca antes encontradas el estudiante también ha aprendido a diseñar la versión adecuada de f = ma a través de la cual puede interrelacionarlas, y a menudo una versión para la cual nunca ha encontrado un equivalente literal. sCómo ha aprendido a hacer todo esto?
Un fenómeno conocido tanto de los estudiantes de la ciencia como de sus historiadores nos ofrece una clave. Los primeros habitualmente informan que han seguido de punta a cabo un capítulo de su texto, que lo han comprendido a la perfección, pero que sin embargo tienen dificultades para resolver muchos de los problemas colocados al final del capítulo. Por lo general, asimismo, estas dificultades se disuelven de la misma manera. Con o sin ayuda de su instructor, el estudiante, descubre una manera de versu problema, como un problema que ya había encontrado antes. Una vez captada la similitud, percibida la analogía entre dos o más problemas distintos, puede interrelacionar símbolos y relacionarlos con la naturaleza de las maneras que ya han resultado efectivas antes. El esbozo de ley, como por ejemplo f = ma, ha funcionado como instrumento, informando al estudiante de las similitudes que debe buscar, mostrándole la Gestalt en que puede verse la situación. La resultante capacidad para percibir toda una variedad de situaciones como similares, como sujeto f = ma o para alguna otra generalización simbólica es, en mi opinión, lo principal que adquiere un estudiante al resolver problemas ejemplares, sea papel y lápiz o en un laboratorio bien provisto. Después de completar un cierto número, que puede variar extensamente de un individuo al siguiente, contempla la situación a la que se enfrenta como un científico en la misma Gestalt que otros miembros de su grupo de especialistas. Para él ya no son las mismas situaciones que había encontrado al comenzar su preparación. En el ínterin ha asimilado una manera de ver las cosas, comprobada por el tiempo y sancionada por su grupo.
El papel de las relaciones de similitud adquiridas también se muestra claramente en la historia de las ciencias. Los científicos resuelven los enigmas modelándolos sobre anteriores soluciones de enigmas, a menudo recurriendo apenas a las generalizaciones simbólicas. Galileo descubrió que una bola que rueda por una pendiente adquiere la velocidad exactamente necesaria para volvera la misma altura vertical en una segunda pendiente de cualquier cuesta, y aprendió a ver tal situación experimental como el péndulo con una masa puntual como lenteja. Huyghens resolvió entonces el problema de la oscilación de un péndulo físico imaginando que el cuerpo extendido de este último se componía de unos péndulos puntuales galileicos, y que los nexos entre ambos podían soltarse instantáneamente en cualquier punto de su vaivén. Una vez sueltos los vínculos, podrían balancearse libremente los péndulos puntuales, pero su colectivo centro de gravedad cuando cada uno llegara a su punto más alto, como el del péndulo de Galileo, tan sólo subiría a la altura desde la cual había empezado a caer el centro de gravedad del péndulo extendido. Finalmente, Daniel Bernoulli descubrió cómo hacer que el flujo de agua que pasa por un orificio se pareciera al péndulo de Huyghens. Determínese el descenso del centro de gravedad del agua que hay en el tanque y del chorro durante un infinitesimal intervalo de tiempo. Luego imagínese que cada partícula de agua después avanza separadamente, hacia arriba, hasta la máxima altura alcanzable con la velocidad adquirida durante el intervalo. El ascenso del centro de gravedad de las partículas individuales entonces debe equiparse con el descenso del centro de gravedad del agua que hay en el tanque y el chorro. Desde tal punto, la tan largamente buscada velocidad del efluvio apareció inmediatamente.11 Este ejemplo debe empezar a poner en claro lo que quiero decir con aprender a partir de los problemas, a versituaciones como similares, como sujetas a la aplicación de la misma ley o esbozo de ley científica. Simultáneamente, debe mostrar por qué me refiero al conocimiento consecuencial de la naturaleza, adquirido mientras se aprendía la relación de similitud y, después incorporado a una forma de ver las situaciones físicos, que no en reglas o leyes. Los tres problemas del ejemplo, todos ellos ejemplares para los mecánicos del siglo XVII, muestran tan solo una ley de la naturaleza. Conocida como el Principió de vis viva, habitualmente se planteaba como “descenso real igual a ascenso potencial”. La aplicación hecha por Bernoulli de tal ley debe mostrarnos cuán consecuencial era. Y sin embargo, el planteamiento verbal de la ley, en sí mismo, es virtualmente impotente. Preséntesele a un actual estudiante de física, que conozca las palabras y que puede resolver todos sus problemas, pero que hoy se vale de medios distintos. Luego imagínese lo que las palabras, aunque bien conocidas, pueden haber dicho a un hombre que no conociera siquiera los problemas. Para él la generalización podía empezar a funcionar tan solo cuando aprendiera a reconocer los “descensos reales” y los “ascensos potenciales” como ingredientes de la naturaleza, y ello ya es aprender algo, anterior a la ley, acerca de las situaciones que la naturaleza presenta y no presenta. Tal suerte de aprendizaje no de adquiere exclusivamente por medios verbales; antes bien, surge cuando se unen las palabras con los ejemplos concretos de cómo funcionan en su uso; naturaleza y palabra se aprenden alunísono. Utilizando una vez más una útil frase de Michael Polanyi, lo que resulta de este proceso es un “conocimiento tácito” que se obtiene practicando la ciencia, no adquiriendo reglas para practicarla.
4. Conocimiento tácito e intuición
Tal referencia al conocimiento tácito y el consecuente rechazo de las reglas ponen en relieve otro problema que ha interesado a muchos de mis críticos y que pareció aportar una base para acusarme de subjetividad e irracionalidad. Algunos lectores han considerado que yo estaba tratando de hacer que la ciencia se basara en intuiciones individuales analizables, antes que en la ley y en la lógica. Pero tal interpretación resulta desviada en dos aspectos esenciales. En primer lugar, si estoy hablando siquiera acerca de intuiciones, no son individuales. Antes bien; son las posesiones, probadas y compartidas, de los miembros de un grupo que han logrado éxito, y el practicante bisoño las adquiere mediante su preparación, como parte de su aprendizaje para llegar a pertenecer a un grupo. En segundo lugar, en principio no son analizables. Por el contrario, actualmente estoy experimentando con un programa de computadoras destinado a investigar sus propiedades a un nivel elemental. Acerca de tal programa no tengo nada que decir aquí,12 pero hasta una mención de él debe probar mi punto más esencial. Cuando hablo de un conocimiento incorporado a unos ejemplos compartidos, no estoy refiriéndome a un modo de conocimiento que sea menos sistemático o menos analizable que el conocimiento incorporado a las reglas, leyes o normas deejemplificación. En cambio, tengo en mente un modo de conocer deficientemente construido, aunque haya sido reconstruido de acuerdo con las reglas tomadas de ejemplares, y que después han funcionado en lugar de estos. O, para decir la misma cosa de otro modo, cuando hablo de adquirir de unos paradigmas la capacidad de reconocer una situación dada como parecida a otras antes vistas, no estoy indicando un progreso que no sea, potencialmente, del todo explicable en términos del mecanismo neuro-cerebral. En cambio, estoy afirmando que la explicación, por su naturaleza, no responderá a la pregunta “ssimilar con respecto a qué?: Tal pregunta es una petición de una regla, en este caso de unas normas por las cuales unas situaciones particulares se agrupen en conjuntos de similitud, y estoy afirmando que la tentación de buscar normas (o al menos un conjunto completo) debe resistirse en este caso. Sin embargo, no es al sistema al que me estoy oponiendo, sino a una clase particular de sistema.
Para dar más sustancia a mi argumento, tendrá que hacer una breve digresión. Lo que sigue me parece obvio en la actualidad, pero el constante recurrir en mi texto original a frases como “el mundo cambia” parece indicar que no siempre fue así. Si dos personas se encuentran en el mismo lugar y miran en la misma dirección, debemos, bajo pena de caer en un solipsismo, concluir, que reciben unos estímulos muy similares. (Si ambos pudieran fijar su mirada en el mismo lugar, los estímulos serían idénticos). Pero la gente no ve estímulos; conocimiento de éstos es sumamenteteórico y abstracto. En cambio, tienen sensaciones, y nada nos obliga a suponer que las sensaciones de nuestras dos personas sean las mismas. (Los escépticos escaso recordarán que la ceguera al color nunca fue advertida hasta que John Dalton la describió en 1794). Por el contrario, muchos procesos neurales ocurren entre la recepción de un estímulo y la conciencia de una sensación. Entre las otras cosas que sabemos con seguridad acerca de ello están: que muy diferentes estímulos pueden producir las mismas sensaciones; que el mismo estímulo puede producir muy distintas sensaciones, y, finalmente que el camino del estímulo a la sensación está condicionado, en parte, por la educación. Individuos educados en distintas sociedades se comportan en algunas ocasiones como si vieran diferentes cosas. Si no tuviéramos la tentación de identificar los estímulos, uno a uno, con las sensaciones, podríamos reconocer que en realidad hacen eso.
Nótese ahora que dos grupos, cuyos miembros tienen sensaciones sistemáticamente distintas al recibir los mismos estímulos, en cierto sentido viven en diferentes mundos. Suponemos la existencia de los estímulos para aplicar nuestras percepciones del mundo y suponemos su inmutabilidad para evitar el solipsismo, tanto individual como social. No tengo la menor reserva ante ninguna de las dos suposiciones. Pero nuestro mundo está poblado, en primer lugar, no por estímulos, sino por los objetos de nuestras sensaciones, y éstos no tienen que ser los mismos, de un individuo a otro, o de un grupo a otro. Por supuesto hasta elgrado en que los individuos pertenecen al mismo grupo y comparten así educación, idioma, experiencias y cultura, tenemos buenas razones para suponer que sus sensaciones son las mismas. sDe qué otro modo deberíamos comprender la plenitud de su comunicación y lo común de sus respuestas conductistas a su medio? Deben de ver cosas, estímulos de procesos, de manera muy parecida. Pero donde empiezan las diferenciaciones y la especialización de los grupos, ya no tenemos una prueba similar de la inmutabilidad de las sensaciones. Sospecho que un mero provincianismo nos hace suponer que el camino de los estímulos a la sensación es el mismo para los miembros de todos los grupos.
Si volvemos ahora a los ejemplares y reglas, lo que he estado tratando de decir, por muy provisional que haya sido mi manera de hacerlo, es esto: una de las técnicas fundamentales por las que los miembros de un grupo, ya sea toda una cultura o una subcomunidad de especialistas dentro de ella, aprenden a ver las mismas cosas cuando se encuentran ante los miembros estímulos, es al verse ante ejemplos de situaciones que sus predecesores en el mismo grupo ya había aprendido a ver como similares y como diferentes de otras especies de situaciones. Estas situaciones similares pueden ser sucesivas presentaciones sensorias del mismo individuo, digamos de una madre, básicamente reconocida de vista como lo que es, y como diferente del padre o de la hermana. Pueden ser presentaciones de los miembros de familias naturales, digamos de cisnes por una parte y de gansos por la otra. O bien, paralos miembros de grupos más especializados, pueden ser ejemplos de la situación newtoniana, o de sus situaciones; es decir, que todos son similares ya que están sujetos a una versión de la forma simbólica f = ma y que son distintos de las situaciones a las que, por ejemplo, se aplican los proyectos de ley de la óptica.
Admitamos por el momento que pueda ocurrir algo de esta índole. sDebemos decir que lo que se ha adquirido de unos ejemplos son las reglas y la capacidad de aplicarlas? Esta descripción es tentadora porque el hecho de que veamos una situación como parecida a las que hemos encontrado antes tiene que ser el resultado de un procesamiento neutral, gobernado absolutamente por leyes físicas y químicas. En este sentido, en cuanto hemos aprendido a hacerlo, el reconocimiento de la similitud debe ser tan totalmente sistemático como el latir de nuestros corazones. Pero ese paralelo mismo nos sugiere que el reconocimiento también puede ser involuntario, un proceso sobre el cual no tenemos ningún dominio. Si es así, entonces no debemos concebirlo propiamente como algo que logramos mediante la aplicación de reglas y normas. Hablar de él en estos términos implica que tenemos acceso a opciones; por ejemplo, acaso hayamos desobedecido una regla, o aplicado mal una norma, experimentando con otra forma de ver.13 Esas, lo acepto, son las clases de cosas que no podemos hacer.
O, más precisamente, son casas tales que no podemos hacer hasta que hayamos tenido una sensación, que hayamos percibido algo; entonces a menudo buscamos normas y las ponemosen uso. Entonces podemos embarcarnos en una interpretación, proceso deliberativo por el cual escogemos entre alternativas, como no lo hacemos en la percepción misma. Quizás, por ejemplo, haya algo raro en lo que hemos visto (recuérdense unas barajas anormales). Al dar vuelta a una esquina vemos a mamá entrando en una tienda del centro en un momento en que creíamos que se encontraba en casa. Al contemplar lo que hemos visto, de pronto exclamamos: t”Esa no era mamá, pues tenía el cabello rojo!” Al entrar en la tienda vemos de nuevo a esa señora y no podemos entender cómo pudimos confundirla con mamá . O, quizá vemos las plumas de la cola de un ave que está tomando sus alimentos del fondo de una piscina. sSe trata de un cisne o un ganso? Contemplamos lo que hemos visto mentalmente comparamos las plumas de la cola con las de los cisnes y gansos que antes hemos vista. O quizás, si nos inclinamos hacia la ciencia, tan sólo queremos saber algunas características generales (la blancura de los cisnes, por ejemplo) de los miembros de una familia zoológica que fácilmente podamos reconocer. Una vez más, contemplamos lo que antes habíamos percibido, buscando lo que tengan en común los miembros de la familia dada.
Todos estos son procesos deliberativos, y en ellos buscamos y desplegamos normas y reglas. Es decir, tratamos de interpretar las sensaciones que ya tenemos, de analizar qué es lo dado para nosotros. Por mucho que hagamos eso, los procesos en cuestión finalmente deben ser neurales, y por tanto están gobernados por las mismas leyesfísico-químicas que gobiernan la percepción, por una parte, y el latido de nuestros corazones, por la otra. Pero el hecho de que el sistema obedezca las mismas leyes en los tres casos no es una razón para suponer que nuestro aparato neural está programado para operar de la misma manera en la interpretación como en la percepción o en ambas como en el latir de nuestros corazones. A lo que hemos estado oponiéndonos en este libro es, por tanto, al intento, tradicional desde Descartes, pero no antes, de analizar la percepción como un proceso interpretativo, como una versión inconsciente de lo que hacemos después de haber percibido.
Lo que hace que la integridad de la percepción valga la pena de subrayarse es, por supuesto, que tanta experiencia pasada se encuentra incorporada en el aparato neural que transforma los estímulos en sensaciones. Un mecanismo perceptual apropiadamente programado tiene valor de supervivencia. Decir que los miembros de distintos grupos pueden tener distintas percepciones cuando se encuentran ante los mismos estímulos no es implicar que tengan percepciones en absoluto. En muchos medios, el grupo que no podía diferenciar los perros de los lobos, no pudo subsistir. Tampoco podría un grupo de físicos nucleares de hoy sobrevivir como hombres de ciencia si no pudiera reconocer las huellas de las partículas y los electrones alfa. Es precisamente porque hay tan pocas maneras de ver por lo que aquellas que han pasado por las pruebas de uso del grupo son dignas de ser transmitidas de generación. Asimismo, es porque han sido seleccionadas por sutriunfo sobre el tiempo histórico por lo que tenemos que hablar de la experiencia y el conocimiento de la naturaleza incorporados en el camino del estímulo a la sensación.
Quizás “conocimiento” no sea la palabra adecuada, pero hay razones para valernos de ella. Lo que está incluido en el procesos neural que transforma los estímulos en sensaciones tiene las características siguientes: ha transmitido por medio de la educación; tentativamente, ha resultado más efectivo que sus competidores históricos en el medio actual de un grupo; y. finalmente, está sujeto a cambio, tanto por medio de una nueva educación como por medio del descubrimiento de incompatibilidad con el medio, Tales son características del conocimiento, y ello explica por qué aplico yo ese término. Pero es un uso extraño, porque falta otra característica. No tenemos acceso directo a lo que es aquello que sabemos, no tenemos reglas de generalización con que expresar este conocimiento. Las reglas que pudieran darnos tan acceso se referían a los estímulos, no a las sensaciones. Y solo podemos conocer los estímulos mediante una elaborada teoría. A fin de ella, el conocimiento incluido en el camino del estímulo de sensación sigue siendo tácito.
Lo que antes se ha dicho acerca de la sensación, aunque obviamente preliminar, y que por ello no tiene que ser exacto en todos sus detalles, ha sido considerado literalmente. Por lo menos, es una hipótesis acerca de la visión debe someterse la investigación experimental, aunque, probablemente, no a una verificación directa. Pero hablar así dever y de sensaciones también sirve aquí a unas funciones metafóricas, en todo el cuerpo de este libro. No vemos los electrones, sino antes bien su recorrido, o bien burbujas de vapor en una cámara anublada. No vemos para nada las corrientes eléctricas, sino, antes bien, la aguja de un amperímetro o de un galvanómetro. Sin embargo, en las páginas anteriores, particularmente en la Sección X, repetidas veces he procedido como si en realidad percibiéramos entidades teóricas, como corrientes, electrones y campos, como si aprendiésemos a hacerlo examinando ejemplos, y como si en todos estos casos fuese erróneo dejar de hablar de “ver”. La metáfora que transfiere “ver” contextos similares apenas resulta base suficiente para tales afirmaciones. A la larga, tendrá que ser eliminada en favor de un modo de discurso más literal.
El programa de computadoras antes referido empieza a indicar las maneras en que esto pueda hacerse, pero ni el espacio de que disponemos ni el grado de mi actual comprensión me permiten eliminar aquí la metáfora.14 En cambio, brevemente trataré de sostenerla. Ver unas gotitas de agua o una aguja contra una escala numérica es una primitiva experiencia perceptual para el hombre que no está acostumbrado a cámaras anubladas y amperímetros. Por ellos; requiere contemplación, análisis e interpretación (o bien la intervención de una autoridad exterior) antes de que pueda llegarse a conclusiones acerca de electrones o de corrientes. Pero la posición de quien ha aprendido acerca de tales instrumentos y ha tenido una gran experiencia contales ejemplos es muy distinta, y hay una diferencia correspondiente en la forma en que procesa los estímulos que le llegan a partir de aquellos. Contemplando el vapor de su aliento en una fría noche de invierno, su sensación puede ser la misma del lego, pero al ver una cámara anublada ve (aquí sí literalmente) no gotitas sino el rastro de electrones, partículas alfa, etc. Tales pistas, si el lector desea, son las normas que él interpreta como índices de la presencia de las partículas correspondientes, pero tal camino es a la vez más breve y distinto del que sigue aquél que interpreta las gotitas.
O bien, consideremos al científico que inspecciona un amperímetro para determinar el número ante el cual se ha detenido la aguja. Su sensación probablemente sea la misma que la del profano, particularmente si este último ha leído antes otras clases de metros. Pero ha visto el metro (una vez más, a menudo literalmente) en el contexto de todo el circuito, y sabe algo acerca de su estructura interna. Para él, la posición de la aguja es una norma, pero tan solo del valor de la corriente. Para interpretarla sólo tiene que determinar en qué escala debe leerse el metro. En cambio, para el profano la posición de la aguja no es una norma de nada, excepto de sí misma. Para interpretarla, tendrá que examinar toda la posición de los alambres, internos y externos, experimentar con baterías e imanes, etc. En el uso metafórico tanto como en le literal de “ver”, la interpretación empieza donde la percepción termina. Los dos procesos no son uno mismo, y lo que lapercepción deja para que la interpretación lo complete depende radicalmente de la naturaleza y de la cantidad de la anterior experiencia y preparación.
5. Ejemplares, inconmensurabilidad y revoluciones
Lo que hemos dicho antes nos ofrece una base para aclarar un aspecto más de libro: mis observaciones sobre la inconmensurabilidad y sus consecuencias para los científicos que han debatido la opción entre teorías sucesivas.15 En las Secciones X y XII yo he afirmado que en tales debates, uno y otro bando inevitablemente ven de manera diferente algunas de las situaciones experimentales u observacionales a las que tienen acceso. Sin embargo, como los vocabularios en que discuten de tales situaciones constan predominantemente de los mismos términos, tienen que estar remitiendo algunos de tales términos a la naturaleza de una manera distinta, y su comunicación, inevitablemente, resulta sólo parcial. Como resultado, la superioridad de una teoría sobre otra es algo que no puede demostrarse en el debate, En cambio, como he insistido, cada bando, mediante la persuasión, debe tratar de convertir al otro. Tan solo los filósofos han interpretado con graves errores la intención de estas partes de mi argumento. Sin embargo, muchos de ellos han asegurado que yo creo lo siguiente:16 los defensores de teorías inconmensurables no pueden comunicarse entre si, absoluto; como resultado, en un debate sobre la elección de teorías no puede recurrirse a buenas razones: en cambio la teoría habrá de escogerse por razones que, a fin de cuentas, son personales y subjetivas;alguna especie de percepción mística es la responsable de la decisión a que a final se llegue. Más que ninguna otra parte de este libro, los pasajes en que se basan estas erróneas interpretaciones han sido responsables de las acusaciones de irracionalidad.
Considérense primero mis observaciones sobre la prueba. Lo que he estado tratando de explicar es un argumento sencillo, con el que desde hace largo tiempo están familiarizados los filósofos de la ciencia. Los debates sobre la elección de teorías no pueden tener una forma que se parezca por completo a la prueba lógica o matemática. En esta última, desde el principio quedan estipuladas las premisas y reglas de inferencia. Si hay desacuerdo acerca de las conclusiones, los bandos que participen en el siguiente debate podrán volver sobre sus pasos, uno por uno, revisando cada uno contra toda estipulación anterior. Al final de cada proceso, uno u otro tendrán que admitir que han cometido un error, que han violado una regla previamente aceptada, Después de tal admisión no tendrán a quien recurrir, y la prueba de su oponente resultará decisiva. En cambio, sólo si los dos descubren que difieren acerca del significado o de la aplicación de las reglas estipuladas, que el acuerdo anterior no ofrece una base suficiente para la prueba, sólo entonces continúa el debate en la forma que inevitablemente toma durante las revoluciones científicas. Tal debate es acerca de las premisas, y recurre a la persuasión como preludio de la posibilidad de demostración.
En esta tesis, relativamente familiar, no haynada que implique que no hay buenas razones para cualquier persuadido, o que tales razones a fin de cuentas no son decisivas para el grupo. Tampoco implica siquiera que las razones para la elección son distintas de aquellas que habitualmente catalogan los filósofos de la ciencia: precisión, sencillez, utilidad y similares. Sin embargo, lo que debe indicar es que tales razones funcionan como valores y que así pueden aplicarse de manera diferente individual y colectivamente, por los hombres que convienen en aceptarlas. Por ejemplo, si dos hombres no están de acuerdo acerca de la utilidad relativa de sus teorías, o si convienen en ellas pero no en la importancia relativa de la utilidad y, y digamos, en el ámbito que ofrecen para llegar a una decisión, ninguno podrá quedar convencido de haberse equivocado. Tampoco estará siendo anticientífico ninguno de los dos. No hay un algoritmo neutral para la elección de teorías, no hay ningún procedimiento sistemático de decisión que, aplicado adecuadamente, deba conducir a cada individuo del grupo a la misma decisión. En este sentido es la comunidad de los especialistas, que no sus miembros individuales, la que hace efectiva la decisión. Para comprender por qué se desarrolla la ciencia tal como lo hace, no es necesario desentrañar los detalles de biografía y personalidad que llevan a cada individuo a una elección particular, aunque esto ejerza una notable fascinación? Lo que debe comprenderse, en cambio, es el modo en que un conjunto particular de valores compartidos interactúa con las experienciasparticulares que comparten toda una comunidad de especialistas para determinar que la mayoría de los miembros del grupo a fin de cuentas encuentran decisivo un conjunto de argumentos por encima de otro. Tal proceso es la persuasión, pero presenta un problema más profundo aún. Dos hombres que perciben la misma situación de modo diferente pero que sin embargo no se valen del mismo vocabulario, al discutirlo tienen que estar valiéndose de las palabras de un modo distinto. Es decir, hablan de lo que yo he llamado puntos de vista inconmensurables. sCómo pueden tener esperanzas de entenderse y mucho menos de ser persuasivos? Hasta una respuesta preliminar a tal pregunta requiere una mayor especificación de la naturaleza de la dificultad. Supongo que, al menos en parte, tal especificación toma la forma siguiente.
La práctica de la ciencia normal depende de la capacidad, adquirida a partir de ejemplares, de agrupar objetos y situaciones en conjuntos similares que son primitivos en el sentido en que el agrupamiento se hace sin contestar a la pregunta: “sSimilar con respecto a qué?” Un aspecto central de toda evolución es, entonces, que cambien algunas de las relaciones de similitud. Objetos que fueron agrupados en el mismo conjunto con anterioridad se agrupan de diferentes maneras después, y viceversa. Piénsese en el Sol, la Luna, Marte y la Tierra antes y después de Copérnico; de la caída libre, del movimiento pendular y planetario antes y después de Galileo; o en sales, aleaciones y mezclas de hierros azufrados antes y después de Dalton. Como la mayor partede los objetos, aun dentro de los conjuntos alterados, continúan agrupados, habitualmente se conservan los nombres de los conjuntos. No bastante, la transferencia de un subconjunto forma parte de un cambio crítico en la red de sus interrelaciones. Transferir los metales del conjunto de compuestos al conjunto de elementos desempeñó un papel esencial en el surgimiento de una nueva teoría de la combustión de la acidez, y de la combinación física y química. En poco tiempo tales cambios habianse extendido por todo el campo de la química. Por tanto, no es de sorprender que cuando ocurren tales redistribuciones, dos hombres cuyo discurso previamente había procedido con una comprensión aparentemente completa, de pronto puedan encontrarse respondiendo a un mismo estímulo con descripciones y generalizaciones incompatibles. Esas dificultades no se harán sentir en todos los campos, ni siquiera de su mismo discurso científico, pero sí se plantearán y se agruparán luego más densamente alrededor de los fenómenos de los cuales depende más la elección de una teoría.
Tales problemas, aun cuando por primera vez se hacen evidentes en la comunicación, no son meramente lingüísticos, y no pueden resolverse simplemente estipulando la definición de los términos más difíciles. Como las palabras alrededor de las cuales se agrupan las dificultades han sido aprendidas, en parte por su directa aplicación a ejemplares, quienes participan en una interrupción de la comunicación no pueden decir: ‘Yo uso la palabra ‘elemento’ (o ‘mezcla’ o ‘planeta’ o ‘movimientoincontrolado’) de manera determinada por las siguientes normas”. Es decir, no pueden recurrir a un lenguaje neutro que ambos apliquen de la manera y que sea adecuado al planteamiento de sus teorías o siquiera a las consecuencias empíricas de las teorías. Parte de la diferencia es anterior a la aplicación de los idiomas en que, sin embargo, se refleja.
Los hombres que experimentan tales interrupciones a la comunicación, por lo tanto, deben conservar algún recurso. Los estímulos que actúan sobre ellos son los mismos. Y también su aparato neural general, por muy distintamente programado que esté. A mayor abundamiento, excepto en una pequeña zona del conocimiento (aunque importantísima) aun su programación neural debe estar muy cerca de ser la misma, pues tienen en común una historia, excepto el pasado inmediato. Como resultado, tanto su mundo como su lenguaje científicos son comunes. Dado todo eso en común, debe poder descubrir mucho acerca de aquello en que difieren. Sin embargo, las técnicas requeridas no son ni directas ni confortables, ni partes de arsenal normal del científico. Los científicos rara vez las reconocen por lo que son, y rara vez las utilizan durante más tiempo del requerido para tratar de inducir a una conversión o para convencerse a sí mismos de que no podrán obtenerla.
En resumen, lo que pueden hacer quienes participan en una interrupción de la comunicación es reconocerse uno a otros como miembros de diferentes comunidades lingüísticas, y entonces se convierten en traductores.17 Tomando como objeto de estudio las diferencias entre supropio discurso intragrupal e intergrupal, pueden, en primer lugar, tratar de descubrir los términos y locuciones que, usados sin problemas dentro de la comunidad son, no obstante, focos de disturbio para las discusiones intergrupales. (Las locuciones que no presentan tales dificultades puedan traducirse homofónicamente). Habiendo aislado de la comunidad científica tales ámbitos de dificultad, en un esfuerzo más por dilucidar sus perturbaciones, pueden valerse del vocabulario que diariamente comparten. Es decir, cada uno puede hacer un intento de descubrir lo que el otro mundo ve y dice cuando se le presente un estímulo que pudiera ser distinto de su propia respuesta verbal. Si pueden contenerse lo suficiente para no explicar un comportamiento anormal como consecuencia de un simple error o de locura, con el tiempo pueden volverse muy buenos pronosticadores del comportamiento del otro bando. Cada uno habrá aprendido a traducir la teoría del otro y sus consecuencias a su propio lenguaje y, simultáneamente, a describir en su idioma el mundo al cual se aplica tal teoría. Eso es lo que regularmente hacen (o debieran hacer) los historiadores de la ciencia cuando se enfrentan a teorías científicas anticuadas.
Como la traducción, si se continúa, permite a quienes participen en una interrupción de la comunicación experimentar vicariamente algunos de los méritos y defectos de los puntos de vista de los otros, ésta es una potente herramienta tanto de transformación como de persuasión. Pero ni aun la persuasión tiene que tener buen éxito, y si lotiene, no necesariamente irá acompañada o seguida por la conversión. Una importante distinción que sólo recientemente he reconocido por completo es que las dos experiencias de ninguna manera son las mismas.
Persuadir a alguien es, convengo en ello, convencerlo de que nuestra opinión es mejor que la suya, y por lo tanto debe remplazarla. Esto se logra, ocasionalmente, sin recurrir a nada parecido a la traducción. En ausencia, muchas de las explicaciones y enunciados de problemas suscritos por los miembros de un grupo científico resultarán opacos para el otro. Pero cada comunidad lingüística habitualmente puede producir, desde el principio, unos resultados concretos de su investigación que, aunque sean descriptibles en frases comprendidas de la misma manera por los dos grupos, no pueden ser explicados por la otra comunidad en sus propios términos. Si el nuevo punto de vista se sostiene durante un tiempo y sigue siendo útil, los resultados de la investigación verbalizables de esta manera probablemente crecerán en número. Para algunos hombres, tales resultados, por sí mismos, serán decisivos. Pueden decir: no se cómo lo lograron los partidarios de la nueva opinión, pero yo debo aprenderlo; sea lo que fuere lo que están haciendo, claramente tienen razón. Tal reacción resulta particularmente fácil para los hombres que apenas están ingresando en la profesión, pues aún no han adquirido los vocabularios y compromisos especiales de uno u otro grupo.
Los argumentos que pueden presentarse en el vocabulario del que se valen ambos grupos, de la misma manera,sin embargo, generalmente no son decisivos, al menos no lo son hasta una etapa muy tardía de la evolución de las opiniones opuestas.
Entre aquellos ya admitidos en la profesión pocos quedarán persuadidos sin recurrir un poco a las comparaciones más generales que permite la traducción. Aunque el precio que hay que pagar habitualmente consiste en frases de gran longitud y complejidad (recuérdese la controversia Proust-Berthollet, que se llevó a cabo sin recurrir al término “elemento”), muchos resultados adicionales de la investigación pueden ser traducidos del idioma de una comunidad al de la otra. Además, al avanzar la traducción. algunos miembros de cada comunidad también pueden empezar vicariamente a comprender cómo una afirmación antes confusa puedo parecer una explicación a los miembros del grupo opuesto. La disponibilidad de técnicas como éstas no garantiza, desde luego, la persuasión. Para la mayoría de la gente, la traducción es un proceso amenazante, totalmente ajeno a la ciencia normal. En todo caso, siempre se dispone de contra argumentos y ninguna regla prescribe cómo debe llegarse a un equilibrio. No obstante, conforme un argumento se apila sobre otro argumento y cuando alguien ha recogido con éxito un reto tras otro, sólo la más ciega obstinación podría explicar finalmente una resistencia continuada.
Siendo tal el caso, llega a ser de una importancia decisiva un segundo aspecto de la traducción, muy familiar tanto a lingüistas como historiadores. Traducir una teoría o visión del mundo al propio lenguaje no es hacerla propia.Para ello hay que volverse “completamente indígena”, descubrir que se está pensando y trabajando en un idioma que antes era extranjero, no simplemente traduciéndolo; sin embargo, tal transición no es una que un individuo pueda hacer o pueda dejar de hacer por deliberación y gusto, por buenas que sean sus razones para desear hacerla así. En cambio, en algún momento del proceso de aprender a traducir, el individuo encuentra que ya ha ocurrido la transición, que él se ha deslizado al nuevo idioma sin haber tomado ninguna decisión. O bien, como muchos de quienes encontraron por primera vez, digamos, la relatividad o la mecánica cuántica siendo ya de mediana, edad, se encuentra totalmente persuadido de la nueva opinión, pero, sin embargo, incapaz de internalizarla y de sentirse a gusto en el mundo al que ayuda a dar forma. Intelectualmente, tal hombre ya ha hecho su elección, pero la conversión requerida, si ha de ser efectiva, aún lo elude. No obstante, puede valerse de la manera de la nueva teoría, pero la hará así como un extranjero que se hallara en un medio ajeno, como una alternativa de la que dispone tan sólo porque se encuentran allí algunos “indígenas; La labor del hombre es parasitaria de la de ellos, pues aquél carece de la constelación de conjuntos mentales que por medio de la educación adquirirán los futuros miembros de la comunidad. La experiencia de la conversión que yo he comparado a un cambio de Gestalt permanece, por lo tanto, en el núcleo mismo del proceso revolucionario. Buenas razones para la elección ofrecen motivos para laconversión y el clima en que más probablemente ocurrirá ésta. Además, la traducción puede aportar puntos de entrada para la reprogramación neural, que por inescrutable que sea en este momento, debe hallarse subyacente en la conversión. Pero ni unas buenas razones ni la traducción constituyen la conversión y es este proceso el que tenemos que explicar para comprender una índole esencial de cambio científico.
6. Las revoluciones y el relativismo
Una consecuencia de la posición antes delineada ha molestado particularmente a varios de mis críticos.18 Encuentran relativista mi perspectiva, particularmente como está desarrollada en la última sección de este libro. Mis observaciones sobre la traducción ponen en relieve las razones de esta acusación. Los partidarios de distintas teorías son como los miembros de comunidades distintas de cultura-lenguaje. El reconocer el paralelismo sugiere que en algún sentido ambos grupos pueden estar en lo cierto. Aplicada a la cultura y a su desarrollo, tal posición es relativista.
Pero aplicada a la ciencia puede no serlo, y en todo caso está muy lejos del mero relativismo en un respecto que mis críticos no han visto. Tomados como grupo o en grupos, los practicantes de las ciencias desarrolladas son, como yo he afirmado, fundamentalmente, resolvedores de enigmas. Aunque los valores que a veces despliegan, de elección de teorías se derivan también de otros aspectos de su trabajo, la demostrada capacidad para plantear y para resolver enigmas dados por la naturaleza es, en caso de conflicto de valores, la normadominante para la mayoría de los miembros de un grupo científico. Como cualquier otro valor, la capacidad de resolver enigmas resulta equívoca en su aplicación. Los hombres que la comparten pueden diferir, no obstante en los juicios que hacen basados en su utilización. Pero el comportamiento de una comunidad que la hace preeminente será muy distinto del de aquella comunidad que no lo haga. Creo yo que en las ciencias el alto valor atribuido a la capacidad de resolver enigmas tiene las consecuencias siguientes; imagínese un árbol evolutivo que represente el desarrollo de las modernas especialidades científicas a partir de sus orígenes comunes, digamos en la primitiva filosofía naturalista y en las técnicas. Una línea que suba por ese árbol, sin volver nunca atrás, desde el tronco hasta la punta de alguna rama, podría seguir una sucesión de teorías de ascendencia común. Considerando cualesquiera dos de tales teorías elegidas a partir de puntos no demasiado cercanos a su origen, debe ser fácil establecer una lista de normas que puedan capacitar a un observador no comprometido a distinguir las anteriores de la teoría más reciente, una y otra vez. Entre las más útiles se encontrarán la precisión en la predicción, particularmente en la predicción cuantitativa; el equilibrio entre temas esotéricos y cotidianos, y el número de diferentes problemas resueltos. Menos útiles para este propósito, aunque considerables determinantes de la vida científica, serían valores tales como simplicidad, dimensiones y compatibilidad con otras especialidades. Tales aún noson las requeridas, pero no tengo duda de que se las puede completar. De ser esto posible, entonces el desarrollo científico, como el biológico, constituye un proceso unidireccional e irreversible. Las teorías científicas posteriores son mejores que las anteriores para resolver enigmas en los medios a menudo totalmente distintos a los que se aplican. Tal no es una posición relativista, y muestra el sentido en el cual sí soy un convencido creyente en el progreso científico.
Sin embargo, comparada esta posición con la idea de progreso que hoy prevalece tanto entre los filósofos de la ciencia como entre los profanos, la posición carece de un elemento esencial. A menudo se considera que una teoría científica es mejor que sus predecesores, no tan solo en el sentido en que es un instrumento mejor para descubrir y resolver enigmas, sino también porque, de alguna manera, constituye una representación mejor de lo que en realidad es la naturaleza. A menudo se oye decir que las teorías sucesivas crecen aproximándose cada vez más a la verdad. Generalizaciones aparentes como esa no sólo se refiere a la solución de enigmas y a las predicciones concretas derivadas de una teoría, sino, antes bien, a su ontología, es decir, a la unión de las entidades con que la teoría cubre la naturaleza y lo que “realmente está allí”.
Quizás haya alguna manera de salvar la idea de “verdad” para su aplicación a teorías completas, pero ésta no funcionará. Creo yo que no hay un medio, independiente de teorías, para reconstruir frases como “realmente está allí”; la idea de unaunión de la ontología de una teoría y su correspondiente “verdadero” en la naturaleza me parece ahora, en principio, una ilusión; además, como historiador, estoy impresionado por lo improbable de tal opinión. Por ejemplo, no dudo de que la mecánica de Newton es una mejora sobre la de Aristóteles, y que la de Einstein es una mejora sobre la de Newton como instrumento para resolver enigmas. Pero en su sucesión no puedo ver una dirección coherente de desarrollo ontológico. Por el contrario, en algunos aspectos importantes, aunque, desde luego, no en todos, la teoría general de la relatividad, de Einstein, está más cerca de la Aristóteles que ninguna de las dos de la Newton. Aunque resulta comprensible la tentación de tildar a tal posición de relativista, a mí tal descripción me resulta errónea. Y, a la inversa, si tal posición es relativismo no puedo ver que el relativista pierda nada necesario para explicar la naturaleza y el desarrollo de las ciencias.19
7. La naturaleza de la ciencia
Concluirá con un breve análisis de dos reacciones recurrentes a mi texto original, la primera crítica, la segunda favorable y, creo yo, ninguna de las dos correcta. Aunque ninguna de las dos se relaciona con lo que se ha dicho, ni entre sí, ambas han prevalecido lo suficiente para exigir al menos alguna respuesta.
Unos pocos lectores de mi texto original han notado que yo repetidas veces he pasado del modo descriptivo al modo normativo, transición particularmente marcada en pasajes ocasionales que empiezan con “pero eso no es lo que hacen los científicos”, yque terminan afirmando que los científicos no deben hacerlo. Algunos críticos afirman que yo he estado confundiendo la descripción con la prescripción, violando así el antiguo y honorable teorema filosófico según el cual “es” no puede implicar “debe ser”.20
Sin embargo, tal teorema, en la práctica, ha pasado a no ser más que un marbete, y ya no se le respeta en ninguna parte. Un buen número de filósofos contemporáneos han descubierto importantes contextos en que lo normativo y lo descriptivo quedan inextricablemente entrelazados. “Es” y “debe ser” están lejos de hallarse siempre tan separados como parece. Pero no es necesario recurrir a las sutilezas de la actual filosofía lingüística para desentrañar lo que ha parecido confuso en este aspecto de mi posición. Las páginas anteriores presentan un punto de vista o una teoría acerca de la naturaleza de la ciencia y, como otras filosofías de la ciencia, la teoría tiene consecuencias para el modo en que deben proceder los científicos si quieren que su empresa triunfe. Aunque no tiene que ser correcta, como ninguna otra teoría, sí aporta una base legítima para reiterados “debe ser” y “tiene que ser”. A la inversa, un conjunto de razones para tomar en serio la teoría es que los científicos, cuyos métodos han sido desarrollados y seleccionados de acuerdo con su éxito, en realidad sí se comportan como la teoría dice que deben hacerlo. Mis generalizaciones descriptivas son prueba de la teoría precisamente, porque también pueden haberse derivado de ella, en tanto que, según otras opiniones de lanaturaleza de la ciencia, constituyen un comportamiento anómalo.
Creo yo que la circularidad de tal argumento no lo hace vicioso. Las consecuencias del punto de vista que estamos examinando no quedan agotadas por las observaciones en las que se basó al principio. Desde antes de que el libro fuera publicado por primera vez, algunas partes de la teoría que presenta, habían sido para mí una herramienta de gran utilidad para la exploración del comportamiento y el desarrollo científico. La comparación de esta posdata con las páginas del texto original acaso indique que ha seguido desempeñando tal papel. Ningún punto de vista meramente singular puede ofrecer tal guía.
A una última reacción a este libro, mi respuesta tiene que ser de índole distinta. Muchos de quienes han encontrado un placer en él lo han encontrado no tanto porque ilumine la ciencia cuanto porque han considerado sus principales tesis aplicables también a muchos otros campos. Veo lo que quieren decir, y no desearía desalentar sus esfuerzos de extender la posición; pero, no obstante, su reacción me ha intrigado. En el grado en que mi libro retrata el desarrollo científico como una sucesión de periodos establecidos por la tradición, puntuados por interrupciones no acumulativas, sus tesis indudablemente son de extensa aplicabilidad. Pero así tenían que serlo, porque son tomadas de otros campos. Los historiadores de la literatura, de la música, de las artes, del desarrollo político y de muchas otras actividades humanas han descrito de la misma manera sus temas. La periodización de acuerdocon interrupciones revolucionarias de estilo, gusto y estructura institucional, ha estado siempre entre sus útiles normales. Si yo he sido original con respecto a conceptos como éstos, ello ha sido, principalmente, por aplicarlos a las ciencias, campo que por lo general, se había supuesto que se desarrollaba de manera distinta. Es concebible que la noción de un paradigma como una realización concreta, un ejemplar, sea una segunda contribución. Por ejemplo, yo sospechaba que algunas de las notorias dificultades que rodean a la noción de estilo en las artes plásticas podrán desvanecerse si puede verse que las pinturas están modeladas unas a partir de otras, y no producidas de conformidad con algunos abstractos cánones de estilo.21
Sin embargo, también pretende este libro establecer otra clase de argumento, que ha resultado menos claramente visible para muchos de mis lectores. Aunque el desarrollo científico puede parecerse al de otros campos más de lo que a menudo se ha supuesto, también es notablemente distinto. Por ejemplo, decir que la ciencia, al menos después de cierto punto de su desarrollo, progresa de una manera en que no lo hacen otros campos, pueden ser completamente erróneo, cualquiera que sea tal progreso. Uno de los objetos del libro fue examinar tales diferencias y empezar a aplicarlas. Considérese, por ejemplo, el reiterado hincapié anterior en la ausencia o, como diría yo ahora en la relativa escasez de escuelas en competencia en la ciencia del desarrollo. O recuérdense mis observaciones acerca del grado en que los miembros deuna comunidad científica dada constituyen el único público y son los únicos jueces del trabajo de la comunidad. O piénsese, asimismo, en la naturaleza especial de la educación científica, en la solución de enigmas como objetos y en el sistema de valores que el grupo de científicos muestra en los periodos de crisis y decisión. El libro aísla otros rasgos de la misma índole, no necesariamente exclusivos de la ciencia pero que, en conjunción, si colocan aparte tal actividad.
Acerca de todos estos rasgos de la ciencia hay mucho más por aprender. Habiendo iniciado esta posdata subrayando la necesidad de estudiar la estructura comunitaria de la ciencia, la terminaré subrayando la necesidad de un estudio similar y, sobre todo, comparativo de las correspondientes comunidades en otros ámbitos. sCómo se elige y cómo se es elegido para miembro de una comunidad particular, sea científica o no? sCuál es el proceso y cuáles son las etapas de la socialización del grupo? sQué ve el grupo, colectivamente, como sus metas? sQué desviaciones, individuales o colectivas, tolerará, y cómo controla la aberración impermisible? una mayor comprensión de la ciencia dependerá de las respuestas a otras clases de preguntas, así como a éstas, pero no hay campo en que se necesite con más urgencia un trabajo ulterior. El conocimiento científico, como el idioma, es, intrínsecamente, la propiedad común de un grupo, o no es nada en absoluto. Para comprender esto necesitaremos conocer las características especiales de los grupos que lo crean y que se valen de él.


Política de privacidad