Consultar ensayos de calidad


energía hidráulica - central hidroeléctrica - presa de Asuán - tipos de presas



En una central hidroeléctrica se utiliza energía hidráulica para la generación de energía eléctrica. Son el resultado actual de la evolución de los antiguos molinos que aprovechaban la corriente de los ríos para mover una rueda.
En general, estas centrales aprovechan la energía potencial gravitatoria que posee la masa de agua de un cauce natural en virtud de un desnivel, también conocido como salto geodésico. El agua en su caída entre dos niveles del cauce se hace pasar por una turbina hidráulica la cual transmite la energía a un generador donde se transforma en energía eléctrica.
Partes de una central hidroeléctrica
• Tubería forzada y o canal
• Presa
• Turbina
• Generador
• Transformador
• Líneas eléctricas
• Compuertas hidráulicas y Válvulas hidráulicas
• Rejas y limpia rejas
• Embalse


• Casa de turbinas
• Esquema de una central hidroeléctrica. La letra Fcorresponde a la tubería forzada.

. Una tubería forzada es la tubería que lleva el agua a presión desde el canal o el embalse hasta la entrada de la turbina.


En ingeniería se denomina presa o represa a una barrera fabricada de piedra, hormigón o materiales sueltos, que se construye habitualmente en una cerrada o desfiladero sobre un río o arroyo. Tiene la finalidad de embalsar el agua en el cauce fluvial para elevar su nivel con el objetivo de derivarla, mediante canalizaciones de riego, para su aprovechamiento en abastecimiento o regadío, laminación de avenidas (evitar inundaciones aguas abajo de la presa) o para la producción de energía mecánica al transformar laenergía potencial del almacenamiento en energía cinética y esta nuevamente en mecánica y que así se accione un elemento móvil con la fuerza del agua. La energía mecánica puede aprovecharse directamente, como en los antiguos molinos, o de forma indirecta para producir energía eléctrica, como se hace en las centrales hidroeléctricas.
Términos usados en presas

Presa de Asuán.
• El embalse: es el volumen de agua que queda retenido por la presa.
• El vaso: es la parte del valle que, inundándose, contiene el agua embalsada.
• La cerrada o boquilla: es el punto concreto del terreno donde se construye la presa.
• La presa o cortina: propiamente dicha, cuyas funciones básicas son, por un lado garantizar la estabilidad de toda la construcción, soportando un empuje hidrostático del agua, y por otro no permitir la filtración del agua. A su vez, en la presa se distingue:
• Los paramentos, caras o taludes: son las dos superficies más o menos verticales principales que limitan el cuerpo de la presa, el interior o de aguas arriba, que está en contacto con el agua, y el exterior o de aguas abajo.
• La coronación o coronamiento: es la superficie que delimita la presa superiormente.
• Los estribos o empotramientos: son los laterales del muro que están en contacto con la cerrada contra la que se apoya.
• La cimentación: es la parte de la estructura de la presa, a través de la cual se transmiten las cargas al terreno, tanto las producidas por la presión hidrostática como las del peso propio de la estructura.
• El aliviadero o vertedero: es la estructura hidráulicapor la que rebosa el agua excedente cuando la presa ya está llena.
• Las compuertas: son los dispositivos mecánicos destinados a regular el caudal de agua a través de la presa.
• El desagüe de fondo o descargador de fondo: permite mantener el denominado caudal ecológico aguas abajo de la presa y vaciar la presa en caso de ser necesario (por ejemplo, durante emergencias por posible falla de la presa).
• Las tomas: son utilizadas para extraer agua de la presa para un cierto uso, como puede ser abastecimiento a una central hidroeléctrica o a una ciudad.
• Las esclusas: permiten la navegación 'a través' de la presa.
• La escala o escalera de peces: permite la migración de los peces en sentido ascendente de la corriente (en algunos casos se instalan ascensores para peces).


Tipos de presas
Los diferentes tipos de presas responden a las diversas posibilidades de cumplir la doble exigencia de resistir el empuje del agua y evacuarla cuando sea preciso. En cada caso, las características del terreno y los usos que se le quiera dar al agua, condicionan la elección del tipo de presa más adecuado.
Existen numerosas clasificaciones, dependiendo de:
• si son fijas o móviles (hinchables, por ejemplo)
• su forma o manera de transmitir las cargas a las que se ve sometida
• los materiales empleados en la construcción
Dependiendo de su forma pueden ser:
• de gravedad
• de contrafuertes
• de arco simple
• bóvedas o arcos de doble curvatura
• mixta, si está compuesta por partes de diferente tipología
Dependiendo del material se pueden clasificar en:
• de hormigón(masivo convencional o compactado con rodillo)
• de mampostería
• de materiales sueltos (de escollera, de núcleo de arcilla, con pantalla asfáltica, con pantalla de hormigón, homogénea)
Las presas hinchables, basculantes y pivotantes suelen ser de mucha menor entidad.
Según su estructura

Sección esquemática de una presa de tipo gravedad.
• Presa de gravedad: es aquella en la que su propio peso es el encargado de resistir el empuje del agua. El empuje del embalse es transmitido hacia el suelo, por lo que éste debe ser suficientemente estable para soportar el peso de la presa y del embalse. Constituyen las represas de mayor durabilidad y que menor mantenimiento requieren.
Dentro de las presas de gravedad se puede tener:
• Escollera o materiales sueltos: de tierra o suelo homogéneo, tierra zonificada, CFRD (enrocado con losa de hormigón) y otros.
• De hormigón: tipo HCR (hormigón compactado con rodillos) y hormigón convencional.
Su estructura recuerda a la de un triángulo isósceles ya que su base es ancha y se va estrechando a medida que se asciende hacia la parte superior aunque en muchos casos el lado que da al embalse es casi vertical. La razón por la que existe una diferencia notable en el grosor del muro a medida que aumenta la altura de la presa se debe a que la presión en el fondo del embalse es mayor que en la superficie. De esta forma, el muro tendrá que soportar más presión en el lecho del cauce que en la superficie. La inclinación sobre la cara aguas arriba hace que el peso del agua sobre la presa incremente su estabilidad.
•Presa de arco simple: es aquella en la que su propia forma es la encargada de resistir el empuje del agua. Debido a que la presión se transfiere en forma muy concentrada hacia las laderas de la cerrada, se requiere que ésta sea de roca muy dura y resistente. Constituyen las represas más innovadoras en cuanto al diseño y que menor cantidad de hormigón se necesita para su construcción. La primera presa de arco de la que se tiene noticia es la presa de Vallon de Baume, realizada por los romanos cerca deGlanum (Francia).1 2

Sección esquemática de una presa bóveda.
• Presa de bóveda, doble arco, o arco de doble curvatura: cuando la presa tiene curvatura en el plano vertical y en el plano horizontal, también se denomina de bóveda. Para lograr sus complejas formas se construyen con hormigón y requieren gran habilidad y experiencia de sus constructores, que deben recurrir a sistemas constructivos poco comunes.

Presa Hoover, una presa de tipo arco-gravedad.
• Presa de arco-gravedad: combina características de las presas de arco y las presas de gravedad y se considera una solución de compromiso entre los dos tipos. Tiene forma curva para dirigir la mayor parte del esfuerzo contra las paredes de un cañón o un valle, que sirven de apoyo al arco de la presa. Además, el muro de contención tiene más espesor en la base y el peso de la presa permite soportar parte del empuje del agua. Este tipo de presa precisa menor volumen de relleno que una presa de gravedad.
• Presa de contrafuertes o aligerada.
• Presa de bóveda múltiple.
Según sus materiales
•Presas de hormigón: son las más utilizadas en los países desarrollados ya que con éste material se pueden elaborar construcciones más estables y duraderas; debido a que su cálculo es del todo fiable frente a las producidas en otros materiales. Normalmente, todas las presas de tipo gravedad, arco y contrafuerte están hechas de este material. Algunas presas pequeñas y las más antiguas son deladrillo, de sillería y de mampostería. En España, el 67 % de las presas son de gravedad y están hechas con hormigón ya sea con o sin armaduras de acero.

Presa de gravedad del embalse de Gabriel y Galán, en Extremadura(España).
La presa de las Tres Gargantas situada en el curso del río Yangzi en China es la planta hidroeléctrica y de control de inundaciones más grande del mundo. Se terminó en el año 2009. Una docena de ciudades y miles de pueblos fueron engullidos por las aguas, obligando a desplazarse a más de un millón y medio de personas.
Artículo principal: Presas de tierra
• Presas de materiales sueltos: son las más utilizadas en los países subdesarrollados ya que son menos costosas y suponen el 77 % de las que podemos encontrar en todo el planeta. Son aquellas que consisten en un relleno de tierras, que aportan la resistencia necesaria para contrarrestar el empuje de las aguas. Los materiales más utilizados en su construcción son piedras, gravas, arenas, limos y arcillas aunque dentro de todos estos los que más destacan son las piedras y las gravas. En España sólo suponen el 13 % del total.
Este tipo de presas tienen componentes muy permeables, por lo que esnecesario añadirles un elemento impermeabilizante. Además, estas estructuras resisten siempre por gravedad, pues la débil cohesión de sus materiales no les permite transmitir los empujes del agua al terreno. Este elemento puede ser arcilla (en cuyo caso siempre se ubica en el corazón del relleno) o bien una pantalla de hormigón, la cual se puede construir también en el centro del relleno o bien aguas arriba. Estas presas tienen el inconveniente de que si son rebasadas por las aguas en una crecida, corren el peligro de desmoronarse y arruinarse. En España es bien recordado el accidente de lapresa de Tous conocido popularmente como la 'Pantanada de Tous'.
• Presas de enrocamiento con cara de hormigón: este tipo de presas en ocasiones es clasificada entre las de materiales sueltos; pero su forma de ejecución y su trabajo estructural son diferentes. El elemento de retención del agua es una cortina formada con fragmentos de roca de varios tamaños, que soportan en el lado del embalse una cara de hormigón la cual es el elemento impermeable. La pantalla o cara está apoyada en el contacto con la cimentación por un elemento de transición llamado plinto, que soporta a las losas de hormigón. Este tipo de estructura fue muy utilizado entre 1940 y 1950 en cortinas de alturas intermedias y cayó en desuso hasta finales del siglo XX, cuando fue retomado por los diseñadores y constructores al disponer de mejores métodos de realización y equipos de construcción más eficientes.


Según su aplicación

Presa de derivación en el río Mosa. La bocatoma está en la margenderecha del río. La estructura que atraviesa el río sirve para crear un pequeño represamiento para garantizar el funcionamiento de la bocatoma.
• Presas filtrantes o diques de retención: Son aquellas que tienen la función de retener sólidos, desde material fino, hasta rocas de gran tamaño, transportadas por torrentes en áreas montañosas, permitiendo sin embargo el paso del agua.
• Presas de control de avenidas: Son aquellas cuya finalidad es la de laminar el caudal de las avenidas torrenciales, con el fin de que no se cause daño a los terrenos situados aguas abajo de la presa en casos de fuerte tormenta.
• Presas de derivación: El objetivo principal de estas es elevar la cota del agua para hacer factible su derivación, controlando la sedimentación del cauce de forma que no se obstruyan las bocatomas de derivación. Este tipo de presas son, en general, de poca altura ya que el almacenamiento del agua es un objetivo secundario.
• Presas de almacenamiento: El objetivo principal de éstas es retener el agua para su uso regulado en irrigación, generación eléctrica, abastecimiento a poblaciones, recreación o navegación, formando grandes vasos o lagunas artificiales. El mayor porcentaje de presas del mundo, las de mayor capacidad de embalse y mayor altura de cortina corresponden a este objetivo.
• Presas de relaves o jales (México): Son estructuras de retención de sólidos sueltos y líquidos de desecho, producto de la explotación minera, los cuales son almacenados en vasos para su decantación. Por lo común son de menores dimensiones que las presas que retienen agua,pero en algunos casos corresponden a estructuras que contienen enormes volúmenes de estos materiales. Al igual que las presas hidráulicas tienen cortina (normalmente del mismo tipo de material), vertedero, y en vez de tener una obra de toma o bocatoma poseen un sistema para extraer los líquidos.
Elementos constructivos
Planta de generación de energía

Sección transversal de una central hidroeléctrica.
Artículo principal: Central hidroeléctrica
Para 2005 la energía hidroeléctrica, principalmente proveniente de presas, aportaba el 19 % de la energía eléctrica total del mundo, y más del 63 % de toda la energía renovable.3 Gran parte de esta energía es producida en grandes presas, aunque China use generación a pequeña escala, el conjunto total del país representa el 50 % de toda la energía hidroeléctrica producida en el mundo.3
La mayor parte de la energía hidroeléctrica proviene de la energía potencial proveniente del agua embalsada que es conducida a unaturbina hidráulica y ésta a su vez transmite la energía mecánica a un generador eléctrico. Con el fin de impulsar al fluido y mejorar la capacidad de generación de la presa, el agua se hace correr a través de una gran tubería llamada tubería de carga especialmente diseñada para reducir las pérdidas de energía que se pudieran producir. Existen centrales que son capaces de retornar el agua hacia la presa mediante bombas, o mediante la misma turbina funcionando como bomba, en los momentos de menor demanda eléctrica e impulsar posteriormente esta agua en los momentos de mayor demandaeléctrica. A estas centrales se les denomina centrales hidroeléctricas reversibles o centrales de bombeo.
Aliviaderos

Aliviadero en la presa Llyn Brianne, Gales.
Artículo principal: Aliviadero
Toda presa tiene que tener un sistema para evacuar el agua en caso de lluvias torrenciales que puedan llenarla hasta límites peligrosos.
Impacto humano y social
El impacto de las presas en las sociedades humanas es significativo. Por ejemplo, la presa de las Tres Gargantas en el Río Yangtze en China creará un embalse de 600 km de largo. Su construcción implica el desplazamiento de más de un millón de personas, la pérdida de muchos sitios arqueológicos y culturales de importancia y un cambio ecológico importante.
Se estima que hasta el momento, entre 40 y 80 millones de personas en todo el mundo han sido desplazadas de su hogar a causa de la construcción de presas. En muchos casos la población afectada por las presas no es debidamente consultada. En agosto de 2010 la organización en defensa de los derechos de los pueblos indígenas Survival International publicó un informe sobre el impacto de la construcción de presas sobre esos pueblos y su medioambiente, criticando duramente importantes proyectos en fase de planificación o construcción en todo el mundo.4
Riesgo que supone la construcción de una presa
Artículo principal: Rotura de presa
Como en el caso de toda obras estructural, existe el riesgo de que la presa falle e inunde poblaciones ubicadas cercanas al curso de agua, aguas abajo del cierre. La ingeniería civil se encarga de reducir almínimo la posibilidad de la rotura del dique mediante un análisis exhaustivo del comportamiento de la obra ante situaciones extremas, calculando la estabilidad de la presa tomando en consideración sismos, lluvias torrenciales y otras catástrofes.

Turbina es el nombre genérico que se da a la mayoría de las turbomáquinas motoras. Éstas son máquinas de fluido, a través de las cuales pasa un fluido en forma continua y éste le entrega su energía a través de un rodete con paletas o álabes.
La turbina es un motor rotativo que convierte en energía mecánica . El elemento básico de la turbina es la rueda o rotor, que cuenta con palas, hélices, cuchillas o cubos colocados alrededor de su circunferencia, de tal forma que el fluido en movimiento produce una fuerza tangencial que impulsa la rueda y la hace girar. Esta energía mecánica se transfiere a través de un eje para proporcionar el movimiento de una máquina, un compresor, un generador eléctrico o una hélice.
Las turbinas constan de una o dos ruedas con paletas, denominadas rotor y estátor, siendo la primera la que, impulsada por el fluido, arrastra el eje en el que se obtiene el movimiento de rotación.
Hasta el momento, la turbina es uno de los motores más eficientes que existen (alrededor del 50%) con respecto a los motores de combustión interna y hasta algunos eléctricos. Ya en los años 20, unos inventores, entre ellos uno de apellido Thyssen, patentaron una turbina de combustión interna a la que atribuyeron un rendimiento termodinámico del 31%.
El término turbina suele aplicarse también, por ser el componenteprincipal, al conjunto de varias turbinas conectadas a un generadorpara la obtención de energía eléctrica.
Índice
[ocultar]
• 1 Tipos de turbinas
o 1.1 Turbinas hidráulicas
o 1.2 Turbinas térmicas
• 2 Turbinas eólicas
• 3 Turbina submarina
• 4 Véase también
• 5 Enlaces externos
Tipos de turbinas
Las turbinas pueden clasificarse en dos subgrupos principales: hidráulicas y térmicas.
Turbinas hidráulicas
Artículo principal: Turbina hidráulica

Rotor de una turbina Pelton, ésta es una turbina hidráulica de acción de admisión parcial.
Son aquéllas cuyo fluido de trabajo no sufre un cambio de densidad considerable a través de su paso por el rodete o por el estátor; éstas son generalmente las turbinas de agua, que son las más comunes, pero igual se pueden modelar como turbinas hidráulicas a los molinos de viento o aerogeneradores.
Dentro de este género suele hablarse de:
• Turbinas de acción: Son aquellas en que el fluido no sufre ningún cambio de presión a través de su paso por el rodete. La presión que el fluido tiene a la entrada en la turbina se reduce hasta la presión atmosférica en la corona directriz, manteniéndose constante en todo el rodete. Su principal característica es que carecen de tubería de aspiración. La principal turbina de acción es la Turbina Pelton, cuyo flujo es tangencial. Se caracterizan por tener un número específico de revoluciones bajo (nsFlujo diagonal; Hélice->Flujo axial) y turbinas con álabes orientables (Deriaz->Flujo diagonal; Kaplan->Flujo axial). El empleo de álabes orientables permiteobtener rendimientos hidráulicos mayores.
El rango de aplicación (una aproximación) de las turbinas, de menor a mayor salto es: kaplan-francis-pelton
El número específico de revoluciones es un número común para todas las turbinas/bombas geométricamente semejantes (de menor a mayor es: pelton-francis-kaplan). Cuanto mayor es el número específico de revoluciones, tanto mayor es el riesgo de cavitación de la turbina, es decir, una Turbina Kaplan tiene más probabilidad de que se dé en ella el fenómeno de la cavitación que en una Turbina Francis o una Pelton.
Turbinas térmicas
Son aquéllas cuyo fluido de trabajo sufre un cambio de densidad considerable a través de su paso por la máquina.
Estas se suelen clasificar en dos subconjuntos distintos debido a sus diferencias fundamentales de diseño:
• Turbinas a vapor: su fluido de trabajo puede sufrir un cambio de fase durante su paso por el rodete; este es el caso de las turbinas a mercurio, que fueron populares en algún momento, y el de las turbinas a vapor de agua, que son las más comunes.
• Turbinas a gas: En este tipo de turbinas no se espera un cambio de fase del fluido durante su paso por el rodete.
También al hablar de turbinas térmicas, suele hablarse de los siguientes subgrupos:
• Turbinas a acción: en este tipo de turbinas el salto entálpico ocurre sólo en el estátor, dándose la transferencia de energía sólo por acción del cambio de velocidad del fluido.
• Turbinas a reacción: el salto entálpico se realiza tanto en el rodete como en el estátor, o posiblemente, sólo en rotor.
Igual de común esclasificar las turbinas por la presión existente en ellas en relación a otras turbinas dispuestas en el mismo grupo:
• Turbinas de alta presión: son las más pequeñas de entre todas las etapas y son las primeras por donde entra el fluido de trabajo a la turbina.
• Turbinas de media presión.
• Turbinas de baja presión: Son las últimas de entre todas las etapas, son las más largas y ya no pueden ser más modeladas por la descripción euleriana de las turbomáquinas.
Turbinas eólicas
Artículo principal: Turbina eólica
Una turbina eólica es un mecanismo que transforma la energía del viento en otra forma de energía útil como mecánica o eléctrica.
La energía cinética del viento es transformada en energía mecánica por medio de la rotación de un eje. Esta energía mecánica puede ser aprovechada para moler, como ocurría en los antiguos molinos de viento, o para bombear agua, como en el caso del molino multipala. La energía mecánica puede ser transformada en eléctrica mediante un generador eléctrico (un alternador o un dinamo). La energía eléctrica generada se puede almacenar en baterías o utilizarse directamente.
Véase también: Aerogenerador
Turbina submarina
Una Turbina submarina es un dispositivo mecánico que convierte la energía de las corrientes submarinas en energía eléctrica. Consiste en aprovechar la energía cinética de las corrientes submarinas, fijando al fondo submarino turbinas montadas sobre torres prefabricadas para que puedan rotar en busca de las corrientes submarinas. Ya que la velocidad de estas corrientes varía a lo largo de unaño, se han de ubicar en los lugares más propicios en donde la velocidad de las corrientes varían entre 3 km/h y 10 km/h para implantar centrales turbínicas preferentemente en profundidades lo más someras posibles y que no dañen ningún ecosistema submarino. Las turbinas tendrían una malla de protección que impediría la absorción de animales acuáticos.
Un generador eléctrico es todo dispositivo capaz de mantener una diferencia de potencial eléctrica entre dos de sus puntos (llamadospolos, terminales o bornes) transformando la energía mecánica en eléctrica. Esta transformación se consigue por la acción de un campo magnético sobre los conductores eléctricos dispuestos sobre una armadura (denominada también estátor). Si se produce mecánicamente un movimiento relativo entre los conductores y el campo, se generará una fuerza electromotriz (F.E.M.). Este sistema está basado en la ley de Faraday.
Aunque la corriente generada es corriente alterna, puede ser rectificada para obtener una corriente continua. En el diagrama adjunto se observa la corriente inducida en un generador simple de una sola fase. La mayoría de los generadores de corriente alterna son de tres fases.
El proceso inverso sería el realizado por un motor eléctrico, que transforma energía eléctrica en mecánica.

Generador en la central eléctrica de Bridal veil Falls, Telluride, Colorado. Se trataría del generador más antiguo que se mantiene en servicio (año 1984) en Estados Unidos.
Índice
[ocultar]
• 1 Otros sistemas de generación de corrientes eléctricas
o 1.1 Generadores primarios
• 2Generadores ideales
• 3 Fuerza electromotriz de un generador
• 4 Véase también
• 5 Referencias
• 6 Enlaces externos
Otros sistemas de generación de corrientes eléctricas
No sólo es posible obtener una corriente eléctrica a partir de energía mecánica de rotación sino que es posible hacerlo con cualquier otro tipo de energía como punto de partida. Desde este punto de vista más amplio, los generadores se clasifican en dos tipos fundamentales:
• Primarios: Convierten en energía eléctrica la energía de otra naturaleza que reciben o de la que disponen inicialmente, como alternadores, dinamos, etc.
• Secundarios: Entregan una parte de la energía eléctrica que han recibido previamente, es decir, en primer lugar reciben energía de una corriente eléctrica y la almacenan en forma de alguna clase de energía. Posteriormente, transforman nuevamente la energía almacenada en energía eléctrica. Un ejemplo son las pilas o baterías recargables.
Se agruparán los dispositivos concretos conforme al proceso físico que les sirve de fundamento.
Generadores primarios
Se indican de modo esquemático la energía de partida y el proceso físico de conversión. Se ha considerado en todos los casos conversiones directas de energía. Por ejemplo, elhidrógeno posee energía química y puede ser convertida directamente en una corriente eléctrica en una pila de combustible. También sería su combustión con oxígeno para liberar energía térmica, que podría expansionar un gas obteniendo así energía mecánica que haría girar un alternador para, por inducción magnética, obtenerfinalmente la corriente deseada.
Energía de partida Proceso físico que convierte dicha energía en energía eléctrica
Energía magneto-mecánica Son los más frecuentes y fueron tratados como generadores eléctricos genéricos.
• Corriente continua: Dinamo
• Corriente alterna: Alternador

Energía química (sin intervención de campos magnéticos) Celdas electroquímicas y sus derivados: pilas eléctricas, baterías, pilas de combustible.
Ver sus diferencias en generadores electroquímicos.

Radiación electromagnética
Fotoelectricidad, como en el panel fotovoltaico

Energía mecánica (sin intervención de campos magnéticos) • Triboelectricidad
• Cuerpos frotados
• Máquinas electrostáticas, como el generador de Van de Graaff
• Piezoelectricidad

Energía térmica (sin intervención de campos magnéticos) Termoelectricidad (efecto Seebeck)

Energía nuclear (sin intervención de campos magnéticos) Generador termoeléctrico de radioisótopos


Generador termoeléctrico de radioisótopos de la sonda espacial Cassini.
En la mayoría de los casos, el rendimiento de la transformación es tan bajo que es preferible hacerlo en varias etapas. Por ejemplo, convertir la energía nuclear en energía térmica, posteriormente en energía mecánica de un gas a gran presión que hace girar una turbinaa gran velocidad, para finalmente, por inducción electromagnética obtener una corriente alterna en un alternador, el generador eléctrico más importante desde un punto de vista práctico como fuente de electricidad para casi todos los usos actuales.
Generadores ideales
Desde el punto devista teórico (teoría de circuitos) se distinguen dos tipos de generadores ideales:1
* Generador de voltaje o tensión: un generador de voltaje ideal mantiene un voltaje fijo entre sus terminales con independencia de la resistencia de la carga Rc que pueda estar conectada entre ellos.

Figura 1: Generador de tensión ideal; E = I×Rc
* Generador de corriente o intensidad: un generador de corriente ideal mantiene una corriente constante por el circuito externo con independencia de la resistencia de la carga que pueda estar conectada entre ellos.
En la (Figura 1) se ve el circuito más simple posible, constituido por un generador de tensión constante E conectado a una carga Rc y en donde se cumpliría la ecuación:
E = I×Rc

Figura 2: E = I×(Rc+Ri)
El generador descrito no tiene existencia real en la práctica, ya que siempre posee lo que, convencionalmente, se ha dado en llamar resistencia interna, que aunque no es realmente una resistencia, en la mayoría de los casos se comporta como tal.
En la (Figura 2) se puede ver el mismo circuito anterior, pero donde la resistencia interna del generador viene representada por una resistencia Ri, en serie con el generador, con lo que la ecuación anterior se transforma en:
E = I×(Rc+Ri)
Así, un generador real puede considerarse en muchos casos como un generador ideal de tensión con una resistencia interna en serie, o bien como un generador ideal de intensidad en paralelo con una resistencia.1
Fuerza electromotriz de un generador
Una característica de cada generador es su fuerza electromotriz (F.E.M.),simbolizada por la letra griega epsilon (ε), y definida como el trabajo que el generador realiza para pasar la unidad de carga positiva del polo negativo al positivo por el interior del generador.
La F.E.M. (ε) se mide en voltios y en el caso del circuito de la Figura 2, sería igual a la tensión E, mientras que la diferencia de potencial entre los puntos a y b, Va-b, es dependiente de la carga Rc.
La F.E.M. (ε) y la diferencia de potencial coinciden en valor en ausencia de carga, ya que en este caso, al ser I = 0 no hay caída de tensión en Ri y por tanto Va-b = E.
Se denomina transformador a un dispositivo eléctrico que permite aumentar o disminuir la tensión en un circuito eléctrico decorriente alterna, manteniendo la potencia. La potencia que ingresa al equipo, en el caso de un transformador ideal (esto es, sin pérdidas), es igual a la que se obtiene a la salida. Las máquinas reales presentan un pequeño porcentaje de pérdidas, dependiendo de su diseño y tamaño, entre otros factores.
El transformador es un dispositivo que convierte la energía eléctrica alterna de un cierto nivel de tensión, en energía alterna de otro nivel de tensión, basándose en el fenómeno de la inducción electromagnética. Está constituido por dos bobinas de material conductor, devanadas sobre un núcleo cerrado de material ferromagnético, pero aisladas entre sí eléctricamente. La única conexión entre las bobinas la constituye el flujo magnético común que se establece en el núcleo. El núcleo, generalmente, es fabricado bien sea de hierro o de láminas apiladas de acero eléctrico,aleación apropiada para optimizar el flujo magnético. Las bobinas o devanados se denominan primario y secundario según correspondan a la entrada o salida del sistema en cuestión, respectivamente. También existen transformadores con más devanados; en este caso, puede existir un devanado 'terciario', de menor tensión que el secundario.
Índice
[ocultar]
• 1 Funcionamiento
• 2 Relación de Transformación
• 3 Principio de funcionamiento
• 4 Corriente de inrush
• 5 Historia
o 5.1 Primeros pasos: los experimentos con bobinas de inducción
o 5.2 El nacimiento del primer transformador
o 5.3 Otra información de interés
• 6 Transformador trifásico
o 6.1 Partes
 6.1.1 El núcleo
 6.1.2 Bobinas
 6.1.3 Cambiador de taps
 6.1.4 Relé de sobrepresión
 6.1.5 Tablero de control
o 6.2 Configuraciones
o 6.3 Clases de ventilación
• 7 Tipos de transformadores
o 7.1 Según sus aplicaciones
 7.1.1 Transformador elevador/reductor de tensión
 7.1.2 Transformadores variables
 7.1.3 Transformador de aislamiento
 7.1.4 Transformador de alimentación
 7.1.5 Transformador trifásico
 7.1.6 Transformador de pulsos
 7.1.7 Transformador de línea o Flyback
 7.1.8 Transformador diferencial de variación lineal
 7.1.9 Transformador con diodo dividido
 7.1.10 Transformador de impedancia
 7.1.11 Estabilizador de tensión
 7.1.12 Transformador híbrido o bobina híbrida
 7.1.13 Balun
 7.1.14 Transformador electrónico
 7.1.15 Transformador de frecuencia variable
 7.1.16 Transformadores de medida
o 7.2 Según su construcción
 7.2.1 Autotransformador
7.2.2 Transformador con núcleo toroidal o envolvente
 7.2.3 Transformador de grano orientado
 7.2.4 Bobina de núcleo de aire
 7.2.5 Transformador de núcleo envolvente
 7.2.6 Transformador piezoeléctrico
• 8 Véase también
• 9 Referencias
• 10 Enlaces externos
Funcionamiento

Representación esquemática del transformador.
Este elemento eléctrico se basa en el fenómeno de la inducción electromagnética, ya que si aplicamos una fuerza electromotriz alterna en el devanado primario, debido a la variación de la intensidad y sentido de la corriente alterna, se produce la inducción de un flujo magnético variable en el núcleo de hierro.
Este flujo originará por inducción electromagnética, la aparición de una fuerza electromotriz en el devanado secundario. La tensión en el devanado secundario dependerá directamente del número de espiras que tengan los devanados y de la tensión del devanado primario.
Relación de Transformación
Artículo principal: Diseño de transformadores
La relación de transformación indica el aumento o decremento que sufre el valor de la tensión de salida con respecto a la tensión de entrada, esto quiere decir, la relación entre la tensión de salida y la de entrada.
La relación entre la fuerza electromotriz inductora (Ep), la aplicada al devanado primario y la fuerza electromotriz inducida (Es), la obtenida en el secundario, es directamente proporcional al número de espiras de los devanados primario (Np) y secundario (Ns) , según la ecuación:

La relación de transformación (m) de la tensión entre el bobinado primarioy el bobinado secundario depende de los números de vueltas que tenga cada uno. Si el número de vueltas del secundario es el triple del primario, en el secundario habrá el triple de tensión.

Donde: (Vp) es la tensión en el devanado primario o tensión de entrada, (Vs) es la tensión en el devanado secundario o tensión de salida, (Ip) es la corriente en el devanado primario o corriente de entrada, e (Is) es la corriente en el devanado secundario o corriente de salida.

Esta particularidad se utiliza en la red de transporte de energía eléctrica: al poder efectuar el transporte a altas tensiones y pequeñas intensidades, se disminuyen las pérdidas por el efecto Joule y se minimiza el costo de los conductores.
Así, si el número de espiras (vueltas) del secundario es 100 veces mayor que el del primario, al aplicar una tensión alterna de 230voltios en el primario, se obtienen 23.000 voltios en el secundario (una relación 100 veces superior, como lo es la relación de espiras). A la relación entre el número de vueltas o espiras del primario y las del secundario se le llama relación de vueltas del transformador o relación de transformación.
Ahora bien, como la potencia eléctrica aplicada en el primario, en caso de un transformador ideal, debe ser igual a la obtenida en el secundario:


El producto de la diferencia de potencial por la intensidad (potencia) debe ser constante, con lo que en el caso del ejemplo, si la intensidad circulante por el primario es de 10amperios, la del secundario será de solo 0,1 amperios (una centésima parte).
Principio defuncionamiento

Transformador monofásico ideal.
El principio de funcionamiento del transformador tiene sus bases en la teoría del electromagnetismo resumida en las ecuaciones de Maxwell
Corriente de inrush
La corriente de inrush o corriente transitoria de magnetización es una corriente varias veces la corriente nominal que se produce al momento de conectar el transformador a la red. Puede ser de 10 veces la corriente nominal hasta 100 veces en casos raros. 1
Historia

Transformador de núcleo laminado mostrando el borde de las laminaciones en la parte superior de la unidad.
Primeros pasos: los experimentos con bobinas de inducción
El fenómeno de inducción electromagnética en el que se basa el funcionamiento del transformador fue descubierto por Michael Faradayen 1831, se basa fundamentalmente en que cualquier variación de flujo magnético que atraviesa un circuito cerrado genera una corriente inducida, y en que la corriente inducida sólo permanece mientras se produce el cambio de flujo magnético.
La primera 'bobina de inducción' fue inventada por el sacerdote Nicholas Joseph Callan en la Universidad de Maynooth en Irlanda en 1836. Callan fue uno de los primeros investigadores en darse cuenta de que cuantas más espiras hay en el secundario, en relación con el bobinado primario, más grande es el aumento de la tensión eléctrica.
Los científicos e investigadores basaron sus esfuerzos en evolucionar las bobinas de inducción para obtener mayores tensiones en las baterías. En lugar de corriente alterna (CA), su acción se basóen un 'do&break' mecanismo vibrador que regularmente interrumpía el flujo de la corriente directa (DC) de las baterías.
Entre la década de 1830 y la década de 1870, los esfuerzos para construir mejores bobinas de inducción, en su mayoría por ensayo y error, reveló lentamente los principios básicos de los transformadores. Un diseño práctico y eficaz no apareció hasta la década de 1880, pero dentro de un decenio, el transformador sería un papel decisivo en la “Guerra de las Corrientes”, y en que los sistemas de distribución de corriente alterna triunfaron sobre sus homólogos de corriente continua, una posición dominante que mantienen desde entonces.
En 1876, el ingeniero ruso Pavel Yablochkov inventó un sistema de iluminación basado en un conjunto de bobinas de inducción en el cual el bobinado primario se conectaba a una fuente de corriente alterna y los devanados secundarios podían conectarse a varias lámparas de arco, de su propio diseño. Las bobinas utilizadas en el sistema se comportaban como transformadores primitivos. La patente alegó que el sistema podría, “proporcionar suministro por separado a varios puntos de iluminación con diferentes intensidades luminosas procedentes de una sola fuente de energía eléctrica”.
En 1878, los ingenieros de la empresa Ganz en Hungría asignaron parte de sus recursos de ingeniería para la fabricación de aparatos de iluminación eléctrica para Austria y Hungría. En 1883, realizaron más de cincuenta instalaciones para dicho fin. Ofrecía un sistema que constaba de dos lámparas incandescentes y de arco, generadores y otrosaccesorios.
En 1882, Lucien Gaulard y John Dixon Gibbs expusieron por primera vez un dispositivo con un núcleo de hierro llamado 'generador secundario' en Londres, luego vendieron la idea a la compañía estadounidense Westinghouse Electric. También este sistema fue expuesto en Turín, Italia en 1884, donde fue adoptado para el sistema de alumbrado eléctrico.
El nacimiento del primer transformador
Entre 1884 y 1885, los ingenieros húngaros Károly Zipernowsky, Ottó Bláthy y Miksa Déri, de la compañía Ganz, de ese país, crearon en Budapest el modelo “ZBD” detransformador de corriente alterna, basado en un diseño de Gaulard y Gibbs (Gaulard y Gibbs sólo diseñaron un modelo de núcleo abierto). Descubrieron la fórmula matemática de los transformadores:

donde Vs es la tensión en el secundario y Ns es el número de espiras en el secundario; Vp y Np se corresponden al primario.
Su solicitud de patente hizo el primer uso de la palabra transformador, que había sido acuñada por Bláthy Ottó.
En 1885, George Westinghouse compró las patentes del ZBD y las de Gaulard y Gibbs. Él le encomendó a William Stanley la construcción de un transformador de tipo ZBD para uso comercial. Este diseño se utilizó por primera vez comercialmente en 1886.
Otra información de interés

Transformador de tres fases.
El primer sistema comercial de corriente alterna con fines de distribución de la energía eléctrica que usaba transformadores se puso en operación en 1886 en Great Barington, Massachussets, en los Estados Unidos de América. En ese mismo año, la electricidadse transmitió a 2.000 voltios en corriente alterna a una distancia de 30 kilómetros, en una línea construida en Cerchi, Italia. A partir de esta pequeña aplicación inicial, la industria eléctrica en el mundo ha recorrido en tal forma, que en la actualidad es factor de desarrollo de los pueblos, formando parte importante en esta industria el transformador. El aparato que aquí se describe es una aplicación, entre tantas, derivada de la inicial bobina de Ruhmkorff o carrete de Ruhmkorff, que consistía en dos bobinas concéntricas. A una bobina, llamada primario, se le aplicaba una corriente continua proveniente de una batería, conmutada por medio de un ruptor movido por el magnetismo generado en un núcleo de hierro central por la propia energía de la batería. El campo magnético así creado variaba al compás de las interrupciones, y en el otro bobinado, llamado secundario y con muchas más espiras, se inducía una corriente de escaso valor pero con una fuerza eléctrica capaz de saltar entre las puntas de un chispómetro conectado a sus extremos.
También da origen a las antiguas bobinas de ignición del automóvil Ford T, que poseía una por cada bujía, comandadas por undistribuidor que mandaba la corriente a través de cada una de las bobinas en la secuencia correcta.
Transformador trifásico
Existen muchos tipos de transformadores, entre los cuales el transformador trifásico tiene una importancia indudable. Este tipo de transformador se ocupa tanto en generación cerca de los generadores para elevar la insuficiente tensión de estos, así como también entransmisión por líneas de transmisión y en distribución en donde se transporta la energía eléctrica a voltajes menores hacia casas, comercio e industria. Todos los transformadores desde la generadora hasta la entrada de nuestros hogares o industrias son transformadores trifásicos.
Un transformador trifásico consta de tres fases desplazadas en 120 grados, en sistemas equilibrados tienen igual magnitud. Una fase consiste en un polo positivo y negativo por el que circula una corriente alterna. No es necesario decir que un transformador no funciona con corriente continua, puesto que para que exista un voltaje V debe haber una variación del flujo. V = N dΦ/dt donde N es el número de espiras del lado de alta o baja tensión del transformador. El término dΦ/dt es una derivada del flujo, o en términos simples la variación del flujo magnético. Faraday demostró en el siglo XIX que si se acerca un imán a una bobina moviendo el imán o la bobina se induce una corriente y produce un voltaje los cuales pueden hacer trabajo como encender una bombilla. A modo de curiosidad, en Internet existen varios dispositivos, denominados free energy, algunos de los cuales son falsos. Uno de ellos usa un imán permanente de neodimio fijo o estático sujeto a una bobina también fija, supuestamente al conectar una pequeña ampolleta esta daría luz. Esto es claramente un engaño pues no es posible generar corriente con un flujo magnético constante, de hecho el voltaje es 0 en esta situación. El autor sin embargo ocupa otra bobina debajo de la mesa oculta a la cámara, creando un transformador sencillomonofásico (formado por dos bobinas, una oculta y otra visible) en el cual en la primera bobina oculta induce una corriente sinusoidal la cual genera un flujo variable que induce una corriente y enciende la bombilla.
Partes
El núcleo
El núcleo está formado por varias chapas u hojas de metal (generalmente material ferromagnético) que están apiladas una junto a la otra, sin soldar, similar a las hojas de un libro. La función del núcleo es mantener el flujo magnético confinado dentro de él y evitar que este fluya por el aire favoreciendo las perdidas en el núcleo y reduciendo la eficiencia. La configuración por laminas del núcleo laminado se realiza para evitar las corrientes de Foucault, que son corrientes que circulan entre laminas, indeseadas pues favorecen las perdidas.
Bobinas
Las bobinas son simplemente alambre generalmente de cobre enrollado en las piernas del núcleo. Según el número de espiras (vueltas) alrededor de una pierna inducirá un voltaje mayor. Se juega entonces con el número de vueltas en el primario versus las del secundario. En un transformador trifásico el número de vueltas del primario y secundario debería ser igual para todas las fases.
Cambiador de taps
El cambiador de taps o derivaciones es un dispositivo generalmente mecánico que puede ser girado manualmente para cambiar la razón de transformación en un transformador, típicamente, son 5 pasos uno de ellos es neutral, los otros alteran la razón en más o menos el 5%. Por ejemplo esto ayuda a subir el voltaje en el secundario para mejorar un voltaje muybajo en alguna barra del sistema.
Relé de sobrepresión
Es un dispositivo mecánico que nivela el aumento de presión del transformador que pueden hacerlo explotar. Sin embargo existen varios equipos que explotan a pesar de tener este dispositivo. Existen el relé de presión súbita para presiones transitorias y el relé de sobrepresión para presiones más permanentes.
Tablero de control
Contiene las conexiones eléctricas para el control, relés de protección eléctrica, señales de control de válvulas de sobrepresión hacia dispositivos de protección.
Configuraciones
Las bobinas pueden ser conectadas de forma diferente en delta, estrella, o T. Se pueden hacer transformadores trifásicos de tres formas distintas:
1. Conectando tres transformadores monofásicos
2. Núcleo tipo acorazado
3. Transformador tipo núcleo.
Clases de ventilación
Hay diferentes tipos de ventilación en un transformador. La ventilación puede ser por:
• Convección natural (N).
• Ventilación forzada (F).
El refrigerante al interior del estante del transformador es de varios tipos:
• Aceite (O del inglés Oil).
• Agua (W, del inglés Water).
• Gas (G).
La nomenclatura que designa la ventilación es del tipo XXYY, donde XX indica el tipo de refrigerante, y el YY la ventilación usada. Según esto existen:
• ONAN
• ONAF
• ONWF
• OFAF
Tipos de transformadores
Según sus aplicaciones
Transformador elevador/reductor de tensión

Un transformador con PCB, como refrigerante en plena calle
Son empleados por empresas de generacióneléctrica en las subestaciones de la red de transporte de energía eléctrica, con el fin de disminuir las pérdidas por efecto Joule. Debido a la resistencia de los conductores, conviene transportar la energía eléctrica a tensiones elevadas, lo que origina la necesidad de reducir nuevamente dichas tensiones para adaptarlas a las de utilización. La mayoría de los dispositivos electrónicos en hogares hacen uso de transformadores reductores conectados a un circuito rectificador de onda completa para producir el nivel de tensión de corriente directa que necesitan. Este es el caso de las fuentes de alimentación de equipos de audio, video y computación.
Transformadores variables
También llamados 'Variacs', toman una línea de tensión fija (en la entrada) y proveen de tensión de salida variable ajustable, dentro de dos valores.
Transformador de aislamiento
Proporciona aislamiento galvánico entre el primario y el secundario, de manera que consigue una alimentación o señal 'flotante'. Suele tener una relación 1:1 entre las tensiones del primario y secundario. Se utiliza principalmente como medida de protección, en equipos que trabajan directamente con la tensión de red y también para acoplar señales procedentes de sensores lejanos, en equipos de electromedicina y donde se necesitan tensiones flotantes.
Transformador de alimentación
Pueden tener una o varias bobinas secundarias y proporcionan las tensiones necesarias para el funcionamiento del equipo. A veces incorpora un fusible que corta su circuito primario cuando el transformador alcanza unatemperatura excesiva, evitando que éste se queme, con la emisión de humos y gases que conlleva el riesgo de incendio. Estos fusibles no suelen ser reemplazables, de modo que hay que sustituir todo el transformador.

Transformador trifásico. Conexión estrella-triángulo.

Transformador Flyback moderno.

Transformador diferencial de variación lineal (LVDT).
Transformador trifásico
Tienen tres bobinados en su primario y tres en su secundario. Pueden adoptar forma de estrella (Y) (con hilo de neutro o no) o delta -triángulo- (Δ) y las combinaciones entre ellas: Δ-Δ, Δ-Y, Y-Δ y Y-Y. Hay que tener en cuenta que aún con relaciones 1:1, al pasar de Δ a Y o viceversa, las tensiones de fase varían.
1. Delta estrella: Se usa especialmente en distribución (baja tensión) con delta en alta y estrella en baja con neutro accesible. Esto permite que la onda sinusoidal de tercera armónica se mantenga circulando por la delta, pero no se transmita a las estrella.
Transformador de pulsos
Es un tipo especial de transformador con respuesta muy rápida (baja autoinducción) destinado a funcionar en régimen de pulsos. Su principal aplicación es transferir impulsos de mando sobre elementos de control de potencia como SCR, triacs, etc. logrando un aislamiento galvánico entre las etapas de mando y potencia.
Transformador de línea o Flyback
Artículo principal: Transformador Flyback
Es un caso particular de transformador de pulsos. Se emplea en los televisores con TRC (CRT) para generar la alta tensión y la corriente para las bobinas de deflexiónhorizontal. Suelen ser pequeños y económicos. Además suele proporcionar otras tensiones para el tubo (foco, filamento, etc.). Además de poseer una respuesta en frecuencia más alta que muchos transformadores, tiene la característica de mantener diferentes niveles de potencia de salida debido a sus diferentes arreglos entre sus bobinados secundarios.
Transformador diferencial de variación lineal
Artículo principal: Transformador diferencial de variación lineal
El transformador diferencial de variación lineal (LVDT según sus siglas en inglés) es un tipo de transformador eléctrico utilizado para medir desplazamientos lineales. El transformador posee tres bobinas dispuestas extremo con extremo alrededor de un tubo. La bobina central es el devanado primario y las externas son los secundarios. Un centro ferromagnético de forma cilíndrica, sujeto al objeto cuya posición desea ser medida, se desliza con respecto al eje del tubo.
Los LVDT son usados para la realimentación de posición en servomecanismos y para la medición automática en herramientas y muchos otros usos industriales y científicos.
Transformador con diodo dividido
Es un tipo de transformador de línea que incorpora el diodo rectificador para proporcionar la tensión continua de MAT directamente al tubo. Se llama diodo dividido porque está formado por varios diodos más pequeños repartidos por el bobinado y conectados en serie, de modo que cada diodo sólo tiene que soportar una tensión inversa relativamente baja. La salida del transformador va directamente al ánodo del tubo, sin diodo nitriplicador.
Transformador de impedancia
Este tipo de transformador se emplea para adaptar antenas y líneas de transmisión (tarjetas de red, teléfonos, etc.) y era imprescindible en los amplificadores de válvulas para adaptar la alta impedancia de los tubos a la baja de los altavoces.
Si se coloca en el secundario una impedancia de valor Z, y llamamos n a Ns/Np, como Is=-Ip/n y Es=Ep.n, la impedancia vista desde el primario será Ep/Ip = -Es/n²Is = Z/n². Así, hemos conseguido transformar una impedancia de valor Z en otra de Z/n². Colocando el transformador al revés, lo que hacemos es elevar la impedancia en un factor n².
Estabilizador de tensión
Es un tipo especial de transformador en el que el núcleo se satura cuando la tensión en el primario excede su valor nominal. Entonces, las variaciones de tensión en el secundario quedan limitadas. Tenía una labor de protección de los equipos frente a fluctuaciones de la red. Este tipo de transformador ha caído en desuso con el desarrollo de los reguladores de tensión electrónicos, debido a su volumen, peso, precio y baja eficiencia energética.
Transformador híbrido o bobina híbrida
Es un transformador que funciona como una híbrida. De aplicación en los teléfonos, tarjetas de red, etc.
Balun
Es muy utilizado como balun para transformar líneas equilibradas en no equilibradas y viceversa. La línea se equilibra conectando a masa la toma intermedia del secundario del transformador.
Transformador electrónico
Está compuesto por un circuito electrónico que eleva la frecuenciade la corriente eléctrica que alimenta al transformador, de esta manera es posible reducir drásticamente su tamaño. También pueden formar parte de circuitos más complejos que mantienen la tensión de salida en un valor prefijado sin importar la variación en la entrada, llamadosfuente conmutada.
Transformador de frecuencia variable
Son pequeños transformadores de núcleo de hierro, que funcionan en la banda de audiofrecuencias. Se utilizan a menudo como dispositivos de acoplamiento en circuitos electrónicos para comunicaciones, medidas y control.
Transformadores de medida
Entre los transformadores con fines especiales, los más importantes son los transformadores de medida para instalar instrumentos, contadores y relés protectores en circuitos de alta tensión o de elevada corriente. Los transformadores de medida aíslan los circuitos de medida o de relés, permitiendo una mayor normalización en la construcción de contadores, instrumentos y relés.
Según su construcción

Pequeño transformador con núcleo toroidal.

Cómo caracterizar un núcleo toroidal.

Transformador de grano orientado.
Autotransformador
Artículo principal: Autotransformador
El primario y el secundario del transformador están conectados en serie, constituyendo un bobinado único. Pesa menos y es más barato que un transformador y por ello se emplea habitualmente para convertir 220 V a 125 V y viceversa y en otras aplicaciones similares. Tiene el inconveniente de no proporcionar aislamiento galvánico entre el primario y el secundario.
Transformador connúcleo toroidal o envolvente
El núcleo consiste en un anillo, normalmente de compuestos artificiales de ferrita, sobre el que se bobinan el primario y el secundario. Son más voluminosos, pero el flujo magnético queda confinado en el núcleo, teniendo flujos de dispersión muy reducidos y bajas pérdidas porcorrientes de Foucault.
Transformador de grano orientado
El núcleo está formado por una chapa de hierro de grano orientado, enrollada sobre sí misma, siempre en el mismo sentido, en lugar de las láminas de hierro dulce separadas habituales. Presenta pérdidas muy reducidas pero es caro. La chapa de hierro de grano orientado puede ser también utilizada en transformadores orientados (chapa en E), reduciendo sus pérdidas.
Bobina de núcleo de aire
En aplicaciones de alta frecuencia se emplean bobinados sobre un carrete sin núcleo o con un pequeño cilindro de ferrita que se introduce más o menos en el carrete, para ajustar su inductancia.
Transformador de núcleo envolvente
Están provistos de núcleos de ferrita divididos en dos mitades que, como una concha, envuelven los bobinados. Evitan los flujos de dispersión.
Transformador piezoeléctrico
Para ciertas aplicaciones han aparecido en el mercado transformadores que no están basados en el flujo magnético para transportar la energía entre el primario y el secundario, sino que se emplean vibraciones mecánicas en un cristal piezoeléctrico. Tienen la ventaja de ser muy planos y funcionar bien a frecuencias elevadas. Se usan en algunos convertidores de tensión para alimentarlas lámparas fluorescentes de los monitores de led y TFT usados en computación y en televisión.
La red de transporte de energía eléctrica es la parte del sistema de suministro eléctrico constituida por los elementos necesarios para llevar hasta los puntos de consumo y a través de grandes distancias la energía eléctrica generada en lascentrales eléctricas.
Para ello, los niveles de energía eléctrica producidos deben ser transformados, elevándose su nivel de tensión. Esto se hace considerando que para un determinado nivel de potencia a transmitir, al elevar la tensión se reduce la corriente que circulará, reduciéndose las pérdidas por Efecto Joule. Con este fin se remplazan subestaciones elevadoras en las cuales dicha transformación se efectúa empleando transformadores, o bien autotransformadores. De esta manera, una red de transmisión emplea usualmente voltajes del orden de 220 kV y superiores, denominados alta tensión, de 400 o de 500 kV.
Parte de la red de transporte de energía eléctrica son las llamadas líneas de transporte.
Una línea de transporte de energía eléctrica o línea de alta tensión es básicamente el medio físico mediante el cual se realiza la transmisión de la energía eléctrica a grandes distancias. Está constituida tanto por el elemento conductor, usualmente cables de acero, cobre o aluminio, como por sus elementos de soporte, las torres de alta tensión. Generalmente se dice que los conductores 'tienen vida propia' debido a que están sujetos a tracciones causadas por la combinación de agentes como el viento, la temperatura del conductor, latemperatura del viento, etc.
Existen una gran variedad de torres de transmisión como son conocidas, entre ellas las más importantes y más usadas son las torres de amarre, la cual debe ser mucho más fuertes para soportar las grandes tracciones generadas por los elementos antes mencionados, usadas generalmente cuando es necesario dar un giro con un ángulo determinado para cruzar carreteras, evitar obstáculos, así como también cuando es necesario elevar la línea para subir un cerro o pasar por debajo/encima de una línea existente.
Existen también las llamadas torres de suspensión, las cuales no deben soportar peso alguno más que el del propio conductor. Este tipo de torres son usadas para llevar al conductor de un sitio a otro, tomando en cuenta que sea una línea recta, que no se encuentren cruces de líneas u obstáculos.
La capacidad de la línea de transmisión afecta al tamaño de estas estructuras principales. Por ejemplo, la estructura de la torre varía directamente según el voltaje requerido y la capacidad de la línea. Las torres pueden ser postes simples de madera para las líneas de transmisión pequeñas hasta 46 kilovoltios (kV). Se emplean estructuras de postes de madera en forma de H, para las líneas de 69 a 231 kV. Se utilizan estructuras de acero independientes, de circuito simple, para las líneas de 161 kV o más. Es posible tener líneas de transmisión de hasta 1.000 kV.
Al estar estas formadas por estructuras hechas de perfiles de acero, como medio de sustentación del conductor se empleanaisladores de disco o aisladores poliméricos y herrajes parasoportarlos.
Índice
[ocultar]
• 1 Impactos ambientales
o 1.1 Efectos sobre el uso de la tierra
o 1.2 Desbroce y control de la vegetación en los derechos de vía
o 1.3 Riesgos para la salud y la seguridad
o 1.4 Desarrollo inducido
• 2 Equilibrio entre producción y consumo.
• 3 Véase también
• 4 Referencias
• 5 Fuentes
• 6 Enlaces externos
Impactos ambientales
El impacto ambiental potencial de líneas de transmisión de energía eléctrica incluyen la red de transporte de energía eléctrica, el derecho de vía, las playas de distribución, las subestaciones y los caminos de acceso o mantenimiento. Las estructuras principales de la línea de transmisión son la línea misma, los conductores, las torres y los soportes.
Las líneas de transmisión pueden tener pocos, o cientos de kilómetros de longitud. El derecho de vía donde se construye la línea de transmisión puede variar de 20 a 500 metrosde ancho, o más, dependiendo del tamaño de la línea, y el número de líneas de transmisión. Las líneas de transmisión son, principalmente, sistemas terrestres y pueden pasar sobre los humedales, arroyos, ríos y cerca de las orillas de los lagos, bahías, etc. Son técnicamente factibles, pero muy costosas, las líneas de transmisión subterráneas.
Las líneas de transmisión eléctrica son instalaciones lineales que afectan los recursos naturales y socioculturales.1 Los efectos de las líneas cortas son locales; sin embargo, las más largas pueden tener efectos regionales. En general, mientras más larga sea la línea, mayores serán los impactos ambientales sobre losrecursos naturales, sociales y culturales. Como se tratan de instalaciones lineales, los impactos de las líneas de transmisión ocurren, principalmente, dentro o cerca del derecho de vía. Cuando es mayor el voltaje de la línea, se aumenta la magnitud e importancia de los impactos, y se necesitan estructuras de soporte y derechos de vía cada vez más grandes. Se aumentan también los impactos operacionales. Por ejemplo, los efectos del campo electromagnético (EMF) son mucho mayores para las líneas de 1.000 kV, que para las de 69 kV.
Los impactos ambientales negativos de las líneas de transmisión son causados por la construcción, operación y mantenimiento de las mismas. Las causas principales de los impactos que se relacionan con la construcción del sistema incluyen las siguientes:
• El desbroce de la vegetación de los sitios y los derechos de vía; y,
• La construcción de los caminos de acceso, los cimientos de las torres y las subestaciones.
La operación y mantenimiento de la línea de transmisión incluye el control químico o mecánico de la vegetación dentro del derecho de vía y, de vez en cuando, la reparación y mantenimiento de la línea. Estas actividades, más la presencia física de la línea misma, pueden causar impactos ambientales.
En el lado positivo, al manejarlos adecuadamente, los derechos de vía de las líneas de transmisión pueden ser beneficiosos para la fauna. Las áreas desbrozadas pueden proporcionar sitios de reproducción y alimentación para las aves y los mamíferos. El efecto de 'margen' está bien documentado en la literatura biológica; se tratadel aumento de diversidad que resulta del contacto entre el derecho de vía y la vegetación existente. Las líneas y las estructuras pueden albergar los nidos y servir como perchas para muchas aves, especialmente las de rapiña.
Efectos sobre el uso de la tierra
El mayor impacto de las líneas de transmisión de energía eléctrica se produce en los recursos terrestres. Se requiere un derecho de vía exclusivo para la línea de transmisión de energía eléctrica. Normalmente, no se prohíbe el pastoreo o uso agrícola en los derechos de vía, pero, en general, los otros usos son incompatibles. Si bien no son muy anchos los derechos de vía, pueden interrumpir o fragmentar el uso establecido de la tierra en toda su extensión. Las líneas de transmisión largas afectarán áreas más grandes y causarán impactos más significativos.
Las líneas de transmisión pueden abrir las tierras más remotas para las actividades humanas como colonización, agricultura, cacería, recreación, etc. La ocupación de espacio reservado al derecho de vía puede provocar la pérdida o fragmentación del hábitat, o la vegetación que encuentra en su camino. Estos efectos pueden ser importantes si se afectan las áreas naturales, como humedales o tierras silvestres, o si las tierras recién accesibles son el hogar de los pueblos indígenas.
Desbroce y control de la vegetación en los derechos de vía

Vista en detalle de los aislantes de cerámica.
Hay una variedad de técnicas para limpiar la vegetación del derecho de vía y controlar la cantidad y tipo de la nueva vegetación. Desde el punto devista ambiental, el desbroce selectivo utilizando medios mecánicos o herbicidas es preferible y debe ser analizado en lasevaluaciones ambientales del proyecto.
Se debe evitar el rocío aéreo de herbicidas porque no es selectivo e introduce grandes cantidades de químicos al medio ambiente, y además es una técnica de aplicación imprecisa y puede contaminar las aguas superficiales y las cadenas alimenticias terrestres, y eliminar las especies deseables y envenenar la fauna.
Riesgos para la salud y la seguridad
Al colocar líneas bajas o ubicarlas próximas a áreas con las actividades humanas (p.e., carreteras, edificios) se incrementa el riesgo de electrocución. Normalmente, las normas técnicas reducen este peligro. Las torres y las líneas de transmisión pueden interrumpir la trayectoria de vuelo de los aviones cerca de los aeropuertos y poner en peligro las naves que vuelan muy bajo, especialmente, las que se emplean para actividades agrícolas.
Las líneas de transmisión de energía eléctrica crean campos electromagnéticos. Se disminuye la potencia de los campos, tanto eléctricos, como magnéticos, con el aumento de la distancia de las Líneas de transmisión. La comunidad científica no ha llegado a ningún consenso en cuanto a las respuestas biológicas específicas a la fuerza electromagnética, pero resultados emergentes en comunidades anexas a esta influencia física, sugieren que hay antecedentes fundamentados de riesgos para la salud, asociados a algunos tipos de cáncer.2
Se han promulgado normas en varios estados de los Estados Unidos que reglamentan lafuerza electromagnética que está asociada con las líneas de transmisión de alto voltaje.
Si bien, existe gente que argumenta que las líneas de alta tensión pudiesen afectar el medioambiente y a la gente que vive cerca de las líneas de transmisión, lo cierto es que dicha contaminación electromagnética se ve aplacada por los beneficios económicos de transportar la potencia a una tensión elevada. Existen países en los cuales se subsidia a la gente que vive bajo o en las inmediaciones de las líneas de alta tensión, bajo el supuesto que los tejidos orgánicos pudiesen ser perjudicados por los campos electromagnéticos provocados.
Desarrollo inducido
Dependiendo de su ubicación, las líneas de transmisión pueden inducir desarrollo en los derechos de vía o junto a estos, o en las tierras que se han vuelto más accesibles. En los lugares donde la vivienda sea escasa, los derechos de vía, a menudo, son sitios atractivos para construir viviendas informales, y esto, a su vez, causa otros impactos ambientales y sobrecarga la infraestructura y servicios públicos locales.[cita requerida]
Equilibrio entre producción y consumo.
La electricidad es una de las pocas energías que no es posible almacenar a gran escala (excepto los sistemas de baterías o las presas hidráulicas que pueden ser consideradas reservas electromecánicas de energía de baja inercia). Por ello los operadores de red deben de garantizar el equilibrio entre la oferta y la demanda en permanencia. Si se produce un desequilibrio entre oferta y demanda, se pueden provocar dos fenómenos negativos:En el caso en que el consumo supera la producción, se corre el riesgo de “apagón” por la rápida pérdida de sincronismo de los alternadores, mientras que en el caso de que la producción sea superior al consumo, también puede provocarse un “apagón” por la aceleración de los generadores que producen la electricidad.
Esta situación es típica de las redes eléctricas insulares donde la sobre-producción eólica conlleva a veces la aparición de frecuencias “altas” en las redes.
Las interconexiones entre los países pueden repartir mejor el riesgo de apagones en los territorios interconectados, al ser estos solidarios entre sí en la gestión del equilibrio entre la oferta y la demanda.
La aparición masiva de redes de Generación distribuida también conduce a tener en cuenta este balance global de las redes, especialmente en cuestiones en tensión. La aparición de redes inteligentes (o Smart Grid) deben contribuir al equilibrio general de la red de transporte (frecuencia y tensión), con el equilibrio las redes locales de distribución. Para ello los operadores europeos reflexionan sobre las soluciones técnicas pertinentes teniendo en cuenta la evolución de los modos de generación, hoy por hoy muy centralizados (hidroeléctrica, térmicas o nucleares), pero que podrían llegar a ser mucho más descentralizados en un futuro cercano (energía eólica o solar fotovoltaica).
Una compuerta hidráulica es un dispositivo hidráulico-mecánico destinado a regular el pasaje de agua u otro fluido en unatubería, en un canal, presas, esclusas, obras de derivación u otra estructurahidráulica.
Principales tipos de compuertas
Para canales, presas, esclusas y obras hidráulicas de envergadura los principales tipos de compuertas son:
• Compuerta tipo anillo
• Compuerta tipo basculante, también denominada clapeta o chapaleta
• Compuerta tipo cilindro
• Compuerta tipo esclusa
• Compuerta tipo lagarto
• Compuerta tipo rodante
• Compuerta tipo sector
• Compuerta tipo segmento
• Compuerta tipo Stoney
• Compuerta tipo tambor
• Compuerta tipo tejado
• Compuerta tipo plana (deslizante o con ruedas)
• Compuerta tipo vagón (tipo de compuerta plana).
• Compuerta tipo visera
• Compuerta tipo ataguía.
• Compuertas automáticas para control de nivel
• Compuertas para el control de nivel aguas arriba: Compuerta AMIS
• Compuertas para el control de nivel aguas abajo: Compuerta AVIS
Para tuberías los principales tipos de compuertas, también llamadas válvulas, son:
• Válvula esférica
• Válvula de mariposa
• Válvula Aguja

Una válvula hidráulica es un mecanismo que sirve para regular el flujo de fluidos.1
Las válvulas que se utilizan en obras hidráulicas son un caso particular de válvulas industriales ya que presentan algunas características únicas y por tanto merecen ser tratadas de forma separada.
Índice
[ocultar]
• 1 Clasificación
• 2 Imágenes
• 3 Véase también
• 4 Referencias
• 5 Véase también
Clasificación

Sección válvula de bola.
La clasificación de las válvulas utilizadas en las obras hidráulicas puede hacerse según el tipo de obra hidráulica:
• Presas y centrales hidroeléctricas
• Válvulas paradescarga de fondo en presas, por ejemplo del tipo Howell-Bunger.
• Válvulas disipadoras de energía
• Válvulas para regular el caudal en una toma
• Válvulas para regular la entrada de agua a la turbina
• Válvulas tipo aguja
• Acueductos
• Válvula tipo mariposa
• Válvula tipo compuerta
• Válvula tipo esférico
• Válvulas antirretorno
• Válvula de pie
• Válvula de disco autocentrado
• Sistemas de riego
• Válvulas para hidrantes
• Válvulas antirretorno
• Válvulas de pie

Se denomina embalse a la acumulación de agua producida por una obstrucción en el lecho de un río o arroyo que cierra parcial o totalmente su cauce.
La obstrucción del cauce puede ocurrir por causas naturales como, por ejemplo, el derrumbe de una ladera en un tramo estrecho del río o arroyo, la acumulación de placas de hielo o las construcciones hechas por los castores, y por obras construidas por el hombre para tal fin, como son las presas.
Índice
[ocultar]
• 1 Embalses por causas naturales
o 1.1 Derrumbe de laderas
o 1.2 Acumulación de hielo
o 1.3 Presas construidas por castores
• 2 Embalses artificiales
• 3 Características de los embalses
o 3.1 Niveles característicos de los embalses de los caudales
o 3.2 Volúmenes característicos de un embalse
o 3.3 Caudales característicos de un embalse
• 4 Efectos de un embalse
o 4.1 Generales
o 4.2 Aguas arriba
o 4.3 Aguas abajo
• 5 Uso de los embalses
o 5.1 Embalse de usos múltiples
• 6 Potenciales impactos ambientales
o 6.1 Efectos hidrológicos
o 6.2 Temas sociales
o 6.3 Pesca y fauna
o 6.4 Amenaza sísmica
o 6.5Manejo de la cuenca hidrográfica
• 7 Véase también
• 8 Referencias
• 9 Enlaces externos
Embalses por causas naturales

Presa realizada por castores en Yellowstone.
Derrumbe de laderas
En este caso se trata, de embalses totalmente incontrolados, que generalmente tienen una vida corta, días, semanas o hasta meses. Al llenarse el embalse con los aportes del río o arroyo, se provocan filtraciones a través de la masa de tierra no compactada, y vertidos por el punto más bajo de la corona, que llevan a la ruptura más o menos rápida y abrupta de la presa, pudiendo causar grandes daños a las poblaciones y áreas cultivadas situadas aguas abajo.
Un fenómeno de este tipo se produjo en el paraje conocido como La Josefina en el río Paute, en Ecuador.
Acumulación de hielo
La acumulación de hielo (embancaduras) en los grandes ríos situados en zonas frías se produce generalmente en puntos en los cuales el cauce presenta algún estrechamiento, ya sea natural, como la presencia de rocas, o artificial, como los pilaresde un puente.
Situaciones de este tipo pueden darse, por ejemplo, en el río Danubio. Para prevenir los daños que esto puede causar los servicios de prevención utilizan barcos especiales denominados rompehielos.
Presas construidas por castores
Las presas construidas por castores se dan en pequeños arroyos, generalmente en áreas poco habitadas y, por lo tanto, los eventuales daños causados por su ruptura son generalmente limitados.
Embalses artificiales
Los embalses generados al construir una presa pueden tener lafinalidad de:
• regular el caudal de un río o arroyo, almacenando el agua de los períodos húmedos para utilizarlos durante los períodos más secos para el riego, para el abastecimiento de agua potable, para la generación de energía eléctrica, para permitir la navegación o para diluir poluentes. Cuando un embalse tiene más de un fin, se le llama de usos múltiples;
• contener los caudales extremos de las avenidas o crecidas. Laminación de avenidas;
• crear una diferencia de nivel para generar energía eléctrica, mediante una central hidroeléctrica;
• crear espacios para esparcimiento y deportes acuáticos.
Características de los embalses
Las características físicas principales de un embalse son las curvas cota-volumen, la curva cota-superficie inundada y el caudal regularizado.
Dependiendo de las características del valle, si este es amplio y abierto, las áreas inundables pueden ocupar zonas densamente pobladas, o áreas fértiles para la agricultura. En estos casos, antes de construir la presa debe evaluarse muy objetivamente las ventajas e inconvenientes, mediante un Estudio de impacto ambiental, cosa que no siempre se ha hecho en el pasado.
En otros casos, especialmente en zonas altas y abruptas, el embalse ocupa tierras deshabitadas, en cuyo caso los impactos ambientales son limitados o inexistentes.
El caudal regularizado es quizás la característica más importante de los embalses destinados, justamente, a regularizar, a lo largo del día, del año o periodos plurianuales o quizás pasen siglos antes de que este sea deshabilitado por la manohumana, el caudal que puede ser retirado en forma continua para el uso para el cual se ha construido el embalse.
Niveles característicos de los embalses de los caudales
El nivel del agua en un embalse es siempre mayor que el nivel original del río. Desde el punto de vista de la operación de los embalses, se definen una serie de niveles. Los principales son (en orden creciente):
• Nivel mínimo minimorum: es el nivel mínimo que puede alcanzar el embalse; coincide con el nivel mínimo de la toma situada en la menor cota.
• Nivel mínimo operacional: es el nivel por debajo del cual las estructuras asociadas al embalse y la presa no operan u operan en forma inadecuada.
• Nivel medio. Es el nivel que tiene el 50% de permanencia en el lapso del ciclo de compensación del embalse, que puede ser de un día, para los pequeños embalses, hasta períodos plurianuales para los grandes embalses. El período más frecuente es de un año.
• Nivel máximo operacional: al llegarse a este nivel se comienza a verter agua con el objetivo de mantener el nivel pero sin causar daños aguas abajo.
• Nivel del vertedero. Si la presa dispone de un solo vertedero libre, el nivel de la solera coincide con el nivel máximo operacional. Si el vertedero está equipado con compuertas, el nivel de la solera es inferior al máximo operacional.
• Nivel máximo normal: al llegarse a este nivel la operación cambia de objetivo y la prioridad es garantizar la seguridad de la presa. En esta fase pueden ocurrir daños aguas abajo; sin embargo, se intentará minimizar los mismos.
• Nivel máximo maximorum:en este nivel ya la prioridad absoluta es la seguridad de la presa, dado que una ruptura sería catastrófica aguas abajo. Se mantiene el nivel a toda costa; el caudal descargado es igual al caudal que entra en el embalse.
Volúmenes característicos de un embalse
Los volúmenes característicos de los embalses están asociados a los niveles; de esta forma se tiene:
• Volumen muerto, definido como el volumen almacenado hasta alcanzar el nivel mínimo minimorum.
• Volumen útil, el comprendido entre el nivel mínimo minimorum y el nivel máximo operacional.
• Volumen de laminación, es el volumen comprendido entre el nivel máximo operacional y el nivel máximo normal. Este volumen, como su nombre indica, se utiliza para reducir el caudal vertido en las avenidas, para limitar los daños aguas abajo.
Caudales característicos de un embalse
• Caudal firme. Es el caudal máximo que se puede retirar del embalse en un período crítico. Si el embalse ha sido dimensionado para compensar los caudales a lo largo de unaño hidrológico, generalmente se considera como período crítico al año hidrológico en el cual se ha registrado el volumen aportado mínimo. Sin embargo, existen otras definiciones para el período crítico también aceptadas, como, por ejemplo, el volumen anual de aporte hídrico superado en el 75% de los años, que es una condición menos crítica que la anterior.
• Caudal regularizado. Es el caudal que se puede retirar del embalse durante todo el año hidrológico, asociado a una probabilidad.
Efectos de un embalse

Embalse de Los Peares,Galicia, España.
Los embalses tienen un importante influjo en el entorno; algunos de sus efectos pueden ser considerados positivos y otros pueden ser considerados negativos.
Generales
Los embalses de grandes dimensiones agregan un peso muy importante al suelo de la zona, además de incrementar las infiltraciones. Estos dos factores juntos pueden provocar lo que se conoce como seísmos inducidos. Son frecuentes durante los primeros años después del llenado del embalse. Si bien estos seísmos inducidos son molestos, muy rara vez alcanzan intensidades que puedan causar daños serios a la población.
Aguas arriba
Aguas arriba de un embalse, el nivel freático de los terrenos vecinos se puede modificar fuertemente, pudiendo traer consecuencias en la vegetación circunlacustre.
Aguas abajo
Los efectos de un embalse aguas abajo son de varios tipos; se pueden mencionar:
• Aumento de la capacidad de erosionar el lecho del río.
• Disminución de los caudales medios vertidos y, consecuente, facilidad para que actividades antrópicas ocupen parte del lecho mayor del río.
• Disminución del aporte de sedimentos a las costas, incidiendo en la erosión de las playas y deltas.
Uso de los embalses
Básicamente un embalse creado por una presa, que interrumpe el cauce natural de un río, pone a disposición del operador del embalse un volumen de almacenamiento potencial que puede ser utilizado para múltiples fines, algunos de ellos complementarios y otros conflictivos entre sí, pone a disposición del operador del embalse también un potencial energéticoderivado de la elevación del nivel del agua.
Se pueden distinguir los usos que para su maximización requieren que el embalse esté lo más lleno posible, garantizando un caudal regularizado mayor. Estos usos son la generación de energía eléctrica, el riego, el abastecimiento de agua potable o industrial, la dilución de poluentes. Por el contrario, para el control de avenidas el embalse será tanto más eficiente cuanto más vacío se encuentre en el momento en que recibe una avenida.
Desde el punto de vista de su capacidad reguladora, el embalse puede tener un ciclo diario, mensual, anual e, incluso, en algunos pocos casos, plurianual. Esto significa que el embalse acumula el agua durante, por ejemplo, 20 horas por día, para descargar todo ese volumen para la generación de energía eléctrica durante las 4 horas de pico de demanda; o acumula las aguas durante el período de lluvias, 3 a 6 meses según la región, para usarlo en riego en el período seco.
Embalse de usos múltiples
Artículo principal: Embalse de usos múltiples
Muchos embalses modernos son diseñados para usos múltiples. En esos casos el operador del embalse debe establecer políticas de operación, que deben tener en cuenta:
• Prioridad de cada uno de los usos, asociado a la disponibilidad de otras alternativas técnica y económicamente factibles en el área. En general, el abastecimiento de agua potable tiene la prioridad más elevada.
• Limitaciones de caudal, máximo y mínimo, aguas abajo de la presa que soporta el embalse.
Potenciales impactos ambientales
Los proyectos de lasrepresas grandes causan cambios ambientales irreversibles en una área geográfica grande, y, por lo tanto, tienen el potencial para causar impactos importantes. Ha aumentado la crítica a estos proyectos durante la última década. Los críticos más severos reclaman que, como los beneficios valen menos que los costos sociales, ambientales y económicos, es injustificable construir represas grandes. Otros sostienen que se puede, en algunos casos, evitar o reducir los costos ambientales y sociales a un nivel aceptable, al evaluar cuidadosamente los problemas potenciales y la implementación de las medidas correctivas.
El área de influencia de una represa se extiende desde los límites superiores de captación del reservorio hasta el estero, la costa y el mar. Incluye la cuenca hidrográfica y el valle del río aguas abajo de la represa.
Si bien existen efectos ambientales directos de la construcción de una represa (por ejemplo, problemas con el polvo, la erosión, el movimiento de tierras), los impactos mayores provienen del envase del agua, la inundación de la tierra para formar el reservorio y la alteración del caudal del agua, más abajo. Estos efectos tienen impactos directos para los suelos, la vegetación, la fauna y las tierras silvestres, la pesca, el clima, y, especialmente, para las poblaciones humanas del área.
Los efectos indirectos de la represa, que, a veces, pueden ser peores que los directos, se relacionan con la construcción, mantenimiento y funcionamiento de la misma (por ejemplo, los caminos de acceso, campamentos de construcción, líneas de transmisión de laelectricidad) y el desarrollo de las actividades agrícolas, industriales o municipales, fomentadas por la represa.
Además de los efectos ambientales directos e indirectos de la construcción de la represa, deberán ser considerados los efectos que el medio ambiente produce en la represa. Los principales factores ambientales que afectan el funcionamiento y la vida de la represa son causados por el uso de la tierra, el agua y los otros recursos del área de captación encima del reservorio (por ejemplo la agricultura, la colonización, el desbroce del bosque) y éste puede causar mayor acumulación de limos y cambios en la calidad del agua delreservorio y del río, aguas abajo.
Los beneficios de la represa son: se controlan las inundaciones y se provee un afluente de agua más confiable y de más alta calidad para el riego, y el uso domésticos e industrial. Además, las represas pueden crear alternativas para las actividades que tienen el potencial para causar impactos negativos mayores. La energía hidroeléctrica, por ejemplo, es una alternativa para la energía termoeléctrica a base del carbón, o la energía nuclear. La intensificación de la agricultura, localmente, a través del riego, puede reducir la presión sobre los bosques, los hábitats intactos de la fauna, y las otras áreas que no sean idóneas para la agricultura. Asimismo, las represas pueden crear una industria de pesca, y facilitar la producción agrícola en el área, aguas abajo del reservorio, que, en algunos casos, puede más que compensar las pérdidas sufridas en estos sectores, como resultado de suconstrucción.
Recientemente se está considerando el efecto beneficioso que pudiera tener el almacenamiento de agua en la tierra para compensar el crecimiento del nivel del mar, almacenando en forma líquida el agua que ahora permanece en tierra en forma de hielo en glaciares y nieves perpetuas de las montañas altas, que ahora se está derritiendo debido al calentamiento global. Los beneficios ambientales en las zonas costeras (muchas de ellas muy densamente pobladas) bien podrían compensar los problemas que pudieran producir en las tierras del interior.
Efectos hidrológicos
Al represar un río y crear una laguna, se cambia profundamente la hidrología y limnología del sistema fluvial. Se producen cambios dramáticos en el flujo, la calidad, cantidad y uso del agua, los organismos bióticos y la sedimentación de la cuenca del río.
La descomposición de la materia orgánica (por ejemplo, los árboles) de las tierras inundadas enriquece los alimentos del reservorio. Los fertilizantes empleados aguas arriba se suman a los alimentos que se acumulan y se reciclan en el reservorio. Esto soporta no solamente la pesca, sino también el crecimiento de las hierbas acuáticas, como nenúfaresy jacintos de agua. Las esteras de hierbas y algas pueden constituir molestias costosas. Si obstruyen las salidas de la represa y los canales de riego, destruyen la pesca, limitan la recreación, aumentan los costos de tratamiento del agua, impiden la navegación y aumentan sustancialmente las pérdidas de agua a causa de la transpiración.
Si el terreno inundado tiene muchos árboles y no selimpia adecuadamente antes de inundarlo, la descomposición de esta vegetación agotará los niveles de oxígeno en el agua. Esto afecta la vida acuática, y puede causar grandes pérdidas de pescado. Los productos de la descomposición anaeróbica incluyen el sulfuro de hidrógeno, que es nocivo para los organismos acuáticos y corroe las turbinas de la represa, y el metano, que es un gas de invernadero. El dióxido de carbono, el gas principal que se produce, también exacerba los riesgos de invernadero.
Las partículas suspendidas que trae el río se asientan en el reservorio, limitando su capacidad de almacenamiento y su vida útil, privando el río de los sedimentos, aguas abajo. Muchas áreas agrícolas de los terrenos aluviales han dependido siempre de los limos ricos en alimentos para sostener su productividad. Como el sedimento ya no se deposita, aguas abajo, en el terreno aluvial, esta pérdida de alimentos deberá ser compensada mediante la adición de fertilizantes, para mantener la productividad agrícola. La liberación de las aguas libres de sedimentos, relativamente, puede lavar los lechos, aguas abajo. Sin embargo, la sedimentación del reservorio produce agua de más alta calidad para riego, y consumo industrial y humano.
Los efectos adicionales de los cambios en la hidrología de la cuenca del río, incluyen variaciones en el nivel freático, aguas arriba y abajo del reservorio, y problemas de salinización; estos tienen impactos ambientales directos y afectan a los usuarios aguas abajo.
Temas sociales
Muy a menudo, la gente de ciudad, los interesesagrícolas y las personas que viven lejos, disfrutan de los beneficios de las represas. Pero los que soportan la mayor parte de los costos ambientales y sociales, no siempre se benefician en un grado similar, y en muchos casos no se benefician en absoluto. Los habitantes del área inundada por el reservorios, y los que viven en los terrenos aluviales pueden recibir beneficios, pero casi siempre deben asumir los perjuicios de las obras y de los embalses.
Al llenar el reservorio, normalmente es necesario el desplazamiento involuntario de un número variable de personas —que pueden llegar en algunos casos a cientos de miles— lo que requiere un reajuste social profundo, no solamente de parte de los desplazados sino también de la gente ya establecida en las áreas de reasentamiento (ver la sección “Desplazamiento involuntario”).
Para las personas que permanecen en la cuenca del río, a menudo se restringe el acceso al agua, la tierra y los recursos bióticos. Se interrumpe la pesca artesanal y la agricultura tradicional (tipo recesión) de los terrenos aluviales, a causa de los cambios en el caudal y la reducción en el asentamiento de limos. Los terrenos aluviales de muchos ríos tropicales son áreas de gran importancia para la población humana y la de los animales; al reducirse los terrenos aluviales, debe haber un cambio en el uso de la tierra; caso contrario, las poblaciones se verán obligadas a cambiarse de sitio.
A menudo, en especial en zonas cálidas, los embalse aumentan la incidencia de las enfermedades relacionadas con el agua, tales como por la malaria o laesquistosomiasis.
Se producen también conflictos entre las personas que residen el el área y las que ingresan a la misma a partir de la construcción, tales como los trabajadores de la construcción, los jornaleros temporales para la agricultura y otras actividades inducidas por la represa, con consecuencias tales como agobiamiento de los servicios públicos, competencia por los recursos y conflictos sociales. Estos conflictos pueden ser aún más graves si la etnia de la población local difiere de la de los recién llegados.
Entre las consecuencias positivas pueden citarse: mucho mayor demanda de trabajo durante la construcción de la presa, beneficios para la actividad comercial y de servicios en la zona, un moderado aumento de la demanda de trabajo para mantenimiento posterior a la construcción, mejoras en caminos y provisión de energía, posibles mejoras en el transporte fluvial. En muchos casos, la población aprovecha también la infraestructura que se ha creado para la construcción de la presa una vez que se terminado la misma, tales como las viviendas de los constructores. No es raro que los gobiernos presten especial atención a la infraestructura de una zona marginal solamente cuando la misma pasa a primer plano por la construcción de una gran obra, con lo cual la población de la zona puede obtener beneficios que normalmente no habrían obtenido.
Por último, los grandes y medianos embalses suelen ser aprovechados para fomentar el turismo hacia la región.
Pesca y fauna
Como se dijo anteriormente, la pesca, usualmente, se deteriora, debido a los cambios enel caudal o temperatura del río, la degradación de la calidad del agua, la pérdida de los sitios de desove y las barreras que impiden la migración de los peces. Sin embargo, se crean recursos de pesca en el reservorio, que, a veces, resultan más productivos que los que hubo, anteriormente, en el río.
En los ríos que tienen esteron, biológicamente productivos, los peces y moluscos sufren debido a los cambios en el flujo y la calidad del agua. Las variaciones en el caudal de agua dulce, y por tanto, en la salinidad del estero, cambia la distribución de las especies y los modelos de reproducción de los peces. Las variaciones en la cantidad de alimentos y el deterioro en la calidad del agua del río, pueden tener efectos profundos para la productividad del estero. Estos cambios pueden tener resultados importantes para las especies marinas que se alimentan o pasan parte de su ciclo vitalicio en el estero, o que son influenciadas por los cambios en la calidad de las áreas costaneras.
El mayor impacto para la fauna se originará en la pérdida de hábitat, que ocurre al llenar el reservorio y producirse los cambios en el uso del terreno de la cuenca. Pueden afectar los modelos de migración de la fauna, debido al reservorio y el desarrollo que se relaciona con éste. La caza ilegal y la erradicación de las especies consideradas como plagas agrícolas, clandestina actividad relacionada con el mismo, tienen un efecto más selectivo. La fauna y las aves acuáticas, los reptiles y los anfibios pueden prosperar gracias al reservorio.
Amenaza sísmica
Los reservoriosgrandes pueden alterar la actividad tectónica. La probabilidad de que produzca actividad sísmica es difícil de predecir; sin embargo, se deberá considerar el pleno potencial destructivo de los terremotos, que pueden causar desprendimientos de tierra, daños a la infraestructura de la represa, y la posible falla de la misma.
Manejo de la cuenca hidrográfica
Es un fenómeno común, el aumento de presión sobre las áreas altas encima de la represa, como resultado del reasentamiento de la gente de las áreas inundadas y la afluencia incontrolada de los recién llegados al área. Se produce degradación ambiental, y la calidad del agua se deteriora, y las tasas de sedimentación del reservorio aumentan, como resultado del desbroce del bosque para agricultura, la presión sobre los pastos, el uso del terreno de, como las áreas de la cuenca hidrográfica aguas abajo.

Ubicación de las plantas hidroeléctricas en Venezuela
Primera planta hidroeléctrica de Venezuela:
La primera planta hidroeléctrica de El Encantado empezó construirse en 1895 y se inauguró el 8 de Agosto de 1897. Esta planta no solo era la primera de Venezuela sino la primera de América Latina y el segundo en el continente americano. Fué construida por ingeniero venezolano Ricardo Zuluaga quién así se colocó entre los pioneros de la electricidad en el mundo.


Esta primera planta hidroeléctrica de C.A. La Electricidad de Caracas, fundada el 12 de noviembre de 1895, tenía una capacidad de 240 KW y estaba dotada de dos turbinas, hechas en Suiza, de eje vertical propulsadas por agua conducida poruna larga tubería de una represa más arriba en el Rio Guaire con una diferencia de altitud de 36 metros. Una sola línea de 5.000 voltios transmitía y distribuía la corriente a Caracas.

Central Hidroeléctrica Simón Bolívar: tambien conocida como Represa del Guri, y anteriormente Central Hidroeléctrica Raúl Leoni.Fué construida a 100Km de la desembocadura del rió Caroní en el río Orinoco. El desarrollo de esta Central Hidroeléctrica en su primera etapa comenzó en 1963 y se finalizó en 1978 con una capacidad de 2.065 Megavatios en 10 unidades y con el lago a una cota máxima de 215 metros sobre el niveldel mar. La etapa final de la Central Hidroeléctrica Simón Bolívar en Guri se concluyó en 1.986 y permitió elevar el nivel del lago a la cota máxima de 272 m.s.n.m, construyéndose la segunda Casa de Máquinas que alberga 10 unidades de 630 MW cada una.
La energía producida por la represa es consumida por gran parte del país, inclusive alimentando parte de la ciudad de Caracas, además, se prevé vender una parte de dicha energía a Brasil. Actualmente es la tercera central hidroeléctrica más grande del mundo con sus 10.000 MW de capacidad total instalada; superada por el complejo binacional de Itaipú en Brasil y el Paraguay y del complejo hidroeléctrico de la presa de las Tres Gargantas en China. Mientras el Embalse de Guri, se encuentra en noveno lugar entre los diez de mayor volumen de agua represada en él, con una superficie de 4.250 Km².











Central Hidroeléctrica Antonio José de Sucre: está ubicada en Macagua , fue la primera plantaconstruida en los llamados saltos inferiores del río Caroní, localizada a 10 kilómetros de su desembocadura en el río Orinoco, en Ciudad Guayana, estado Bolívar. Fué construida en el período 1956 – 1961, con una capacidad instalada total de 372 MW. Inaugurada en enero de 1.997, permitio aumentar la generación firme de CVG EDELCA en 13.200 GWh; el flujo de agua turbinado por esta central hidroeléctrica en su Casa de Máquinas III alimenta el Parque La Llovizna, localizado aguas abajo de la Planta.











Central Hidroeléctrica Francisco de Miranda:El desarrollo hidroeléctrico Francisco de Miranda en Caruachi está situado sobre el río Caroní, a unos 59 kilómetros aguas abajo del lago de la Central Hidroeléctrica Simón Bolívar en Guri.

Este Proyecto, formará conjuntamente con las centrales Simón Bolívar Antonio José de Sucre y Manuel Piar(en construcción), el Desarrollo Hidroeléctrico del Bajo Caroní. La primera unidad de la Central Hidroeléctrica Francisco de Miranda en Caruachi entró en operación comercial en el mes de abril del 2003 y fue inaugurada formalmente el 31de marzo de 2.006, por el presidente de la República Bolivariana de Venezuela, Hugo Chávez Frías.










Las centrales termoeléctricas: son aquellas que producen energía eléctrica a partir de la combustión de carbón, fuelóil o gas en una caldera diseñada para tal efecto.


Central Termoeléctrica Ricardo Zuloaga: En 1941 entra en servicio la planta termoeléctrica Ricardo Zuloaga, con una potencia de 27.000 KW. Con la puesta en servicio de esta planta, serompe la supremaciá de la hidroeléctrica, ya que la mayoría de las pequeñas centrales que operaban eran de este tipo. Está planta termoeléctrica consta de tres unidades turbogeneradoras de 400 Megawatts cada una que contribuye con el abastecimiento de electricidad de la Gran Caracas. El vapor utilizado para producir el movimiento de las turbinas proviene del calentamiento de agua de mar previamente tratada, de manera tal que aprovechan al máximo el recurso tan extenso con el que cuentan gracias a su apropiada ubicación en la costa Venezolana.



Central Termoeléctrica Josefa Camejo: El 1s de noviembre de 2008, se inauguró la primera de 3 unidades de la Central Termoeléctrica “Josefa Camejo”. Este complejo tendrá las primeras tres turbinas de 150 megavatios cada una, para un total de 450 megavatios, y permitirá incrementar la generación de energía y fortalecer el servicio en todo el territorio venezolano. Tiene como objetivo brindar mejor servicio eléctrico a los habitantes falconianos, disminuyendo el déficit de generación presente en el Sistema Nor-Occidental y garantizando el soporte de la demanda eléctrica del sector petrolero, especialmente el Complejo Refinador Paraguaná.



Se encuentra en construcción la Central termoeléctrica Argimiro Gabaldón, ubicada en el municipio Palavecino del estado Lara.Con la construcción de la Central Termoeléctrica “Argimiro Gabaldón” se mejorará la estabilidad del sistema eléctrico del estado Lara.




El Estado con el propósito de la optimización del Sistema Eléctrico Nacional, ha asignado más de mil millonesde dolares por parte del Banco de Desarrollo Economico y Social de Venezuela (BANDES), a través del Fondo Conjunto Chino Venezolano(FCCV)para la concreción de numerosos proyectos estructurantes en el sector, su objetivo es maximizar la eficiencia en el uso de los recursos energéticos, fortalecer la red de distribución e incorporar nuevas unidades de generación eléctrica. Están financiado la rehabilitación de la Central Hidroeléctrica Macagua I, la planta termoeléctrica Ezequiel Zamora, la modernización de la represa Simón Bolívar(Guri), la construcción de la subestación Cayaurima provisional y la ampliación del Caroní y subestación San Gerónimo-Cabruta y el conjunto generador Termocentro.
Publicado por Arianny Traviezo Hablemos de energía eléctrica en 15:47

El factor de planta (también llamado factor de capacidad neto o factor de carga) de una central eléctrica es el cociente entre laenergía real generada por la central eléctrica durante un período (generalmente anual) y la energía generada si hubiera trabajado a plena carga durante ese mismo período, conforme a los valores nominales de las placas de identificación de los equipos. Es una indicación de la utilización de la capacidad de la planta en el tiempo.
Los factores de planta o factores de capacidad varían considerablemente dependiendo del tipo de combustible que se utilice y del diseño de la planta. El factor de planta no se debe confundir con el factor de disponibilidad o con eficiencia.
Índice
[ocultar]
• 1 Ejemplo
• 2 Causas de reducción del factor de planta
• 3 Factores de plantatípicos
• 4 Referencia
Ejemplo
Una central eléctrica de carga baja con una capacidad de 1.000 MW produjo 648.000 (megavatio-horas) en un mes de 30 días. El número de (megavatio-horas) que habrían podido ser producidas con la planta a plena capacidad y con un factor de disponibilidad del 100 % puede ser determinado multiplicando la capacidad máxima por el número de horas en el trabajo. Es decir; 1.000 (MW) X 30 (días) X 24 (horas/día) es 720.000 (megavatio-horas). El factor de capacidad es determinado dividiendo la salida real con la salida posible máxima (648.000 MW-h/720.000 MW-h). En este caso, el factor de capacidad es 0.9 (el 90%).
Causas de reducción del factor de planta
En la práctica, el factor de planta nunca es 100%. Se ve disminuido por:
• Las operaciones de mantenimiento, los fallos más o menos largos de equipamientos, etc.
• La ausencia de demanda de electricidad que obliga a los administradores de red a disminuir o parar la producción en algunas unidades.
• La intermitencia o irregularidad de la fuente de energía como es, por ejemplo, el caso de la energía solar o la energía eólica, respectivamente.
• Las pérdidas debidas a equipos eléctricos como inversores AC/DC, líneas de transmisión internas, etc. Otras pérdidas debidas por ejemplo a sombras en el caso de energía solar.
Factores de planta típicos
• Parque eólico: 20-40%.
• Panel fotovoltaico: 10-15%.
• Central hidroeléctrica: 60%.
• Central nuclear: 60%-98%.
• Central termoeléctrica a carbón: 70-90%.
• Central de ciclo combinado: 60%


Política de privacidad