Consultar ensayos de calidad


La energética - energía química, eléctrica, mecánica




DIVERSAS FORMAS DE ENERGÍA


EN NUESTRO lenguaje se define así la palabra energía: poder para obrar, fuerza de voluntad, vigor, tesón en la actividad y causa capaz de transformarse en trabajo mecánico.


Los animales, al alimentarse, están empleando un recurso energético que les permite mantener en actividad su prodigioso organismo, realizar trabajos mecánicos y mantener en funcionamiento su computadora cerebral.


Los antepasados del hombre, hace más de un millón de años, descubrieron cómo afilar piedras al golpearlas una contra otra. Estas piedras, en su mano, se transformaban en un poderoso instrumento de defensa o para procurarse alimento. Lo que aprendió fue que, al aplicar a la piedra la fuerza de su brazo, durante una distancia, ésta adquiría una energía de movimiento que producía acciones importantes al descargar su energía contra un objeto. Un efecto similar se obtenía tomando con la mano una corta y gruesa rama de árbol. Por supuesto, este razonamiento técnico es a posteriori.




En tiempos más recientes, el antepasado del hombre, el llamado hombre de Pekín, aprendió a usar la energía del fuego. El fuego es una energía química que se produce al quemar el carbón de la madera, en una atmósfera de oxígeno, produciéndose bióxido de carbono, que es un gas.


Hace decenas de miles de años, el hombre usaba en su provecho la energía cinética o de movimiento del hacha, el mazo y la lanza. Descubrió, además, cómo fabricar proyectiles con mucha energía cinética. En la honda, la piedra vaadquiriendo su gran velocidad, a través de un largo recorrido circular de varias vueltas. Con la cerbatana, el dardo va adquiriendo su energía a lo largo de su recorrido en el tubo o carrizo.


El descubrimiento del arco y la flecha transformó al hombre en poderoso cazador y guerrero. La flecha adquiere su energía durante la distancia en que la cuerda en tensión le aplica una fuerza a la flecha.


Al dejar caer un cuerpo desde cierta altura, obrará sobre él una fuerza (su propio peso) sobre un cierto recorrido (la altura) por lo que al caer al suelo llevará una energía de movimiento o energía cinética que estará dada por:


Energía cinética = Peso por altura


Un cuerpo que se mueve tiene energía de movimiento y en la física de Galileo y Newton se demuestra que:


Energía cinética = Masa por (velocidad al cuadrado) entre dos


O sea que si un coche se mueve al doble de la velocidad de otro igual, su energía será cuádruple que la del coche lento, porque su energía depende del cuadrado de su velocidad, y si el rápido tiene una velocidad triple que la del lento, su energía cinética será 9 veces mayor.


En la física la energía se mide en joules. Una masa de un kilogramo al caer de una altura de un metro al nivel del mar, adquiere una energía de 9.81 joules (9.81 es la aceleración de la gravedad al nivel del mar).


El hombre ha aprendido a usar las seis diversas formas de energía que se conocen y a transformar un tipo de energía en otro.


Energía mecánica. Existe en dos formas, la cinética y la potencial. Cuando un niño semueve en un columpio, hay un momento en que se encuentra en reposo, en este caso se dice que tiene energía potencial, porque se encuentra en la altura máxima y la gravedad puede obrar y devolverle su energía cinética. Cuando está en el punto más bajo, su energía cinética es máxima y en este caso la potencial es mínima.


El calor. El vapor de una caldera, al pasar a un cilindro, lo mueve y hace girar a las ruedas de la máquina. Los motores de gasolina trabajan por el calor de los gases que estallan dentro de los cilindros, haciendo que se muevan los pistones.


Energía radiante. Cubre un espectro muy amplio, que comprende las ondas de radio y televisión, la luz infrarroja, la luz visible, la luz ultravioleta, los rayos x y los rayos gamma de las radiaciones nucleares.


Energía química. Proviene de la transformación de unos productos químicos en otros. Los alimentos, los combustibles y los explosivos, son fuentes de esta energía.


Energía eléctrica. El hombre aprendió a emplear esta energía, a partir de


La energía química en pilas y acumuladores, o en plantas termoeléctricas por medio de la combustión.


La energía mecánica, a partir de la energía cinética del agua que cae de una presa, del viento o de las mareas.


La energía radiante que nos llega del Sol.


La energía calorífica contenida en las capas terrestres (energía geotérmica).


La energía nuclear.


Energía nuclear. Es la fuente más reciente de energía. Proviene de transmutaciones de los núcleos de los átomos. Usada con fines exclusivamente pacíficos,puede ayudar a proporcionar la energía necesaria para las fábricas, la agricultura y las comunicaciones. A fines del siglo, el combustible básico en el mundo volverá a ser el carbón, y en los países con pocas reservas de este energético, como México, la energía nuclear será de gran valor.


El Sol se mantiene caliente, gracias a que el uranio que contiene se está fisionando ya que su hidrógeno se está fusionando para formar núcleos de gas helio. En otras palabras, el Sol es un enorme reactor nuclear y la energía nuclear que produce y ha producido, a un ritmo prácticamente constante, ha permitido la existencia de vida en la Tierra.


Los científicos usan la siguiente notación para representar números muy grandes: el número diez con un numerito arriba y a su derecha (exponente), nos indica el número de ceros que debemos agregar al número uno. Para las computadoras 'E' significa exponente.


106 = 1,000,000 (un uno seguido de seis ceros) = 10E+6


un exponente negativo (-6), significará


10-6 = 1/1,000,000 un millonésimo = 10E-6

La tabla siguiente nos da una idea aproximada de las energías asociadas con algunos fenómenos.


|Caída de un kilogramo desde un metro 10 joules |
|Dosis mortal de rayos X |I
|Quemar un cerillo |I |10E+3 joules |
|Bala de fusil |I
|Coche pequeño a 60 kilómetros por hora 10E+5 joules |
|Comida de un día 10E+7 joules |
|Recorrido de 1 000 kilómetros en coche grande 10E+9 joules |
|Bomba nuclear mediana |I
|Huracán mediano |I |10E+15 joules |
|Volcán en erupción |I
|Gran terremoto 10E+19 joules|
|Energía que la tierra recibe del Sol en 30 minutos |I |10E+21 |
|Todas las bombas nucleares almacenadas |I
|Energía de rotación de la Tierra 10E+30 joules |
|Energía de movimiento de la Tierra en su órbita 10E+33 joules |
|Energía radiada por el Sol anualmente 10E+34 joules |
|Explosión de una estrella supernova 10E+40 joules* |
|*Nota: 10E+40 significa un uno seguido de cuarenta ceros. |
pic] |



La energía mecánica


En la construcción de sus templos y pirámides, los antiguos utilizaron las llamadas máquinas simples. Los estudios de Arquímedes sobre las palancas nos muestran sus conocimientos respecto a laspalancas, las poleas, el plano inclinado y el tornillo. Él hizo ver que la reducción de la fuerza empleada con cualquiera de estas máquinas se compensaba con su aplicación durante un recorrido mayor, o sea que el trabajo realizado (fuerza por distancia) se mantenía el mismo con o sin la máquina simple. Éste fue un primer paso hacia el principio de la conservación de la energía que los físicos Mayer y Joule establecieron en 1842, y que dice la energía no se crea ni se destruye, sólo puede transformarse de una forma de energía en otra.


Los griegos sabían cómo emplear la energía potencial o de altura del agua, para mover la rueda de un molino y por medio del tornillo de Arquímedes, transformar trabajo mecánico para subir agua a cierta altura.


Hace mucho tiempo, la fuerza humana era la única disponible para sembrar, viajar, cazar, edificar y manufacturar armas y objetos. Después se ayudó con el empleo de la fuerza de diversos animales, como el perro, el caballo y el toro, a los que pudo domesticar. Posteriormente aprendió a usar la energía cinética y potencial del agua de los ríos para realizar trabajo mecánico, y la del viento, en la transportación en ríos, lagos y mares. Por último, aprendió a transformar todas las formas de energía en trabajo mecánico. En países desarrollados, el trabajo realizado por las máquinas es dos mil veces superior al trabajo humano que podrían realizar las personas que en él viven.


La energía química


Al quemar madera, el carbón que contiene se combina con el oxígeno del aire para formar un nuevo compuesto,el bióxido de carbono, que es un gas, y se libera gran cantidad de energía.


Un antepasado del hombre actual, el hombre de Pekín, usaba el fuego en su provecho, hace unos 500 000 años. Esto se sabe por la enorme cantidad de cenizas encontrada en las cuevas que habitaba.


Hace 50 000 años el hombre moderno había heredado de sus antepasados el uso de este poderoso energético, el fuego, o sea la combustión química.


Durante cientos de miles de años, el principal energético del hombre y sus antepasados fue la madera.


Hace un siglo, el carbón mineral pasó a ocupar el primer lugar.


Hace medio siglo, los hidrocarburos (petróleo y gas) se transformaron en el energético principal, lugar que mantendrán hasta principios del próximo siglo, cuando el carbón mineral ocupará nuevamente ese lugar.


Dentro de veinte años, cuando las reservas de los hidrocarburos hayan disminuido notablemente, muchos países del mundo contarán con reservas importantes de carbón mineral. La URSS, Estados Unidos, Canadá, Australia, China y varios países europeos, cuentan con reservas de carbón mineral para seguir operando por unos cien años.


Los países de Latinoamérica y muchos de África que no cuentan con reservas, ni siquiera modestas, de carbón mineral, deberán emplear otros energéticos y en particular, a corto plazo (dentro de varias décadas), la energía nuclear.


Otros energéticos químicos que tuvieron y tienen una gran trascendencia en el desarrollo de la humanidad, son la pólvora, la dinamita y la nitroglicerina.


El calor


Hace dosmil años, en Egipto, Herón de Alejandría construyó la primera máquina de vapor que transformó energía calorífica en trabajo mecánico (Figura 10). El vapor producido en una caldera pasa a una esfera que puede girar alrededor de un eje y tiene dos chiflones por donde escapa el vapor. La esfera gira por el mismo principio por el que se mueve un cohete o un globo al que se le escapa el aire, esto configura la ley de la acción y la reacción de Newton.


Después de este descubrimiento, el mundo tuvo que esperar a que llegaran Galileo y sus discípulos para que se volviera a estudiar el comportamiento de los gases y vapores.


Galileo fue el primero en estudiar el calor que contienen los cuerpos calientes y para ello construyó el primer termómetro que se basaba en que el gas contenido en un recipiente se expande o dilata al calentarse.


Existen numerosas maneras de calentar un cuerpo. Una de ellas es empleando la energía del fuego o sea la energía química. (Nuestro cuerpo se mantiene caliente gracias a la energía química que ingerimos en forma de alimento). Otra es absorbiendo la energía radiante que nos llega del Sol o de otro cuerpo caliente. Una más es por medio de la energía eléctrica. La energía mecánica, a través de la frotación, también produce calentamiento.


El calor que contiene un cuerpo puede emplearse en producir un trabajo mecánico.


Como una aplicación de su ley de la acción y la reacción, Newton ideó un automóvil de cuatro ruedas movido por el chorro de vapor que salía de una caldera a través de un escape dirigido haciaatrás. Este coche nunca se construyó, pero todos hemos visto como se mueve un globo cuando se le sale el aire por la boquilla, que es el mismo principio.


Denis Papin (1647-1712). Físico francés. Fue asistente de dos grandes físicos, el holandés Huygens y el inglés Boyle. Trabajando con pequeñas calderas de vapor, descubrió la hoy llamada olla exprés, en la que se aumenta, en un recipiente hermético, la presión y la temperatura de ebullición del agua con objeto de cocinar los alimentos rápidamente (Figura 40). Introdujo en las calderas válvulas de seguridad que evitaban que la presión aumentara más de lo debido y destruyera el equipo. Fue el primero en producir vapor dentro de un cilindro que contenía un pistón y lograr que el vapor moviera al cilindro, produciéndose así el segundo motor de vapor.


Después de Papin hubo investigadores que continuaron estos trabajos hasta llegar a los coches y las máquinas de vapor.



[pic]


Figura 40. Olla exprés de Papin para cocinar alimentos. Se encuentra en el Conservatoire des Arts et Métiers de París.


Tomás Newcomen (1663-1729). Ingeniero inglés. Perfeccionó la máquina de vapor y la empleó en extraer agua de las minas. Al entrar vapor a un cilindro, movía un pistón y el cilindro se calentaba; para moverlo en sentido contrario se le echaba agua para enfriarlo, y al condensarse el vapor, se hacía vacío y este regresaba al pistón. Por 1770 había unas cien máquinas de Newcomen trabajando en las minas inglesas. Éstas eran muy ineficientes porque se perdía mucha energía en calentar y despuésenfriar los cilindros. Las máquinas empleaban carbón mineral.


José Cugnot (1725-1804). Ingeniero militar francés. En 1765 construyó el primer automóvil o máquina que usara vapor para moverse de un lugar a otro. El automóvil de tres ruedas, tenía en la parte delantera una rueda y la caldera. El vapor movía a un pistón que a su vez movía la rueda delantera. El automóvil estaba destinado a arrastrar piezas de artillería.


En 1770 construyó otro modelo mayor, que debía transportar una carga de cuatro toneladas a una velocidad de cuatro kilómetros por hora. Estos automóviles trabajaron, aunque su manejo era difícil y en las primeras pruebas derribó una pared, sin que el vehículo se dañara mucho. Este automóvil se encuentra actualmente, en el Conservatoire des Arts et Metiérs de París (Figura 41).



[pic]
Figura 41. Esquema del automóvil de vapor de Cugnot, que se encuentra en el Conservatoire des Arts et Métiers de París.

Para facilitar su operación las siguientes máquinas de vapor se montaron en rieles y así nació el ferrocarril.


Roberto Fulton (1765-1815). Inventor norteamericano. Trató de emplear el vapor en la construcción de un submarino, al que llamó Nautilus, y que setenta años después inspiró a Julio Verne su famosa novela.


Trató de venderle su idea primero a Napoleón y después a Inglaterra, pero sus experimentos no tuvieron éxito. Posteriormente trató de mover un barco con vapor en el río Sena y también fracasó.


En 1806 regresó a Estados Unidos, donde construyó un barco, el Clermont, en el que unas paletas mecánicaseran movidas con un motor de vapor. El barco navegó por el río Hudson, de Nueva York a Albany en treinta y dos horas. En poco tiempo construyó una flota de barcos que trabajaron eficientemente.


Jaime Watt (l736-l8l9). Ingeniero inglés. Perfeccionó la máquina de vapor al agregar un condensador externo al cilindro, donde el vapor se condensaba, evitando la necesidad de calentar y enfriar el cilindro. Con esto, las máquinas se volvieron más eficientes y el consumo de carbón se redujo a la tercera parte del necesario con las máquinas de Newcomen. En las máquinas de Watt el cilindro siempre estaba caliente y el condensador siempre frío.


Inventó el pistón de doble acción, en el que el vapor entraba primero por la izquierda y movía el pistón a la derecha y después entraba por la derecha, moviendo al pistón a la izquierda y así sucesivamente.


Estos motores tuvieron gran repercusión cuando se emplearon en los telares ingleses, siendo factor preponderante de la revolución industrial que se inició en Inglaterra.


En su honor, la unidad de potencia (trabajo realizado en un segundo) se mide en watts.


Ricardo Trevithick (1771-1838). Ingeniero de minas inglés. Fue el primero a quien se le ocurrió poner una máquina de vapor sobre rieles de hierro, dando origen al ferrocarril. En 1804, su máquina de un cilindro horizontal arrastró cinco carros durante cuatro horas por catorce kilómetros. En el tren viajaban 70 personas y llevaba una carga de nueve toneladas de lingotes de hierro.


Jorge Stephenson (1781-1848). Inventor inglés. Perfeccionóla locomotora. En 1825 una de sus máquinas movió treinta y ocho carros a una velocidad de veinticinco kilómetros por hora.


En 1830 estableció una línea ferroviaria entre Liverpool y Manchester, Inglaterra.


Sadi Carnot (1796-1832). Físico francés. Desarrolló una teoría sobre la forma como el calor puede transformarse en trabajo mecánico. Las máquinas de vapor perfeccionadas por Watt tenían una eficiencia de 7%, es decir, el 93% de la energía empleada se desperdiciaba.


Carnot observó que para realizar un trabajo mecánico a partir del calor se necesitaba disponer de un cuerpo caliente y de uno frío (o menos caliente). En el caso de las máquinas de vapor, la temperatura del vapor corresponde al cuerpo caliente (Tc) y la temperatura del agua en el condensador (Tf ), a la temperatura del cuerpo frío. Carnot demostró que la eficiencia máxima que puede obtenerse, depende de la diferencia de temperaturas en la máquina (Tc-Tf ).


En otras palabras, si disponemos sólo de un cuerpo muy caliente, no podemos producir un trabajo mecánico, a menos que consigamos un cuerpo frío (o menos caliente).


Para las temperaturas normales de operación de las máquinas, una buena aproximación a la eficiencia máxima que puede obtenerse es la siguiente,






En donde las temperaturas se miden a partir de la temperatura más baja que pueda existir (temperatura absoluta o Kelvin).


La temperatura Kelvin = temperatura centígrada + 273, esto es, que el hielo se funde a 273 grados Kelvin y el agua hierve, al nivel del mar, a 373 grados Kelvin.Si por ejemplo tenemos una máquina en la que el vapor tiene una temperatura de 150 grados centígrados (423 grados Kelvin) y la temperatura fría del condensador es de 20 grados centígrados (293 grados Kelvin), la eficiencia máxima que podría obtenerse sería de un 30% y, en la práctica, menor.


En la fórmula vemos que la eficiencia aumenta cuando la diferencia de temperatura entre el cuerpo caliente y el frío aumenta. A continuación, grandes líneas de ferrocarril se tendieron principalmente en Estados Unidos y Rusia, mientras que los coches de vapor tuvieron poca importancia. Las cosas cambiaron cuando el francés Lenoir construyó el primer motor de combustión interna y éste fue perfeccionado por el francés Beau de Rochas y el alemán Otto.


Juan José Lenoir (1822-1900). Inventor belga-francés. Fue el primero en construir un motor de combustión interna que trabajaba con gas de alumbrado como combustible. Construyó el primer automóvil y la primera lancha que trabajó con un motor de combustión interna (antes que él se construyeron coches y barcos movidos con motores de vapor).


Los motores de Lenoir eran muy deficientes y fueron perfeccionados en teoría por Beau de Rochas, quien ideó el motor de cuatro tiempos, y por Otto que fue el primero que lo fabricó.


Nicolás Augusto Otto (1832-1891). Inventor alemán. Fue el primero en construir los motores de cuatro tiempos, también llamados de Otto, que aún se usan en los automóviles modernos.


Durante el primer movimiento del pistón, una mezcla de aire y gasolina entra al cilindro.Durante el segundo movimiento, la mezcla es comprimida por el movimiento del pistón. Cuando la compresión es máxima, una chispa hace explotar la mezcla, ésta se expande, mueve al pistón y realiza el trabajo mecánico. En el cuarto movimiento, el pistón expulsa del cilindro los gases quemados y está listo para realizar el siguiente ciclo.


Otto construyó su primer motor en 1876, y su compañía vendió en unos cuantos años 35 000 motores. El motor de Otto hizo posible el desarrollo de la industria automovilística y de la aviación.


Rodolfo Diesel (1858-1913). Inventor alemán. Desarrolló un nuevo tipo de motor similar al de Otto, pero que no usa bujías. Por trabajar con derivados del petróleo más pesados que la gasolina y más baratos, su uso resulta más económico.


Al comprimir suficientemente el aire en el segundo movimiento, éste aumenta de temperatura lo suficiente para iniciar la combustión del petróleo que se inyecta por medio de una bomba, produciéndose la combustión durante cierto recorrido del proceso de expansión. Cuando termina la combustión, los gases calientes continúan expandiéndose y así el trabajo mecánico realizado durante el movimiento del pistón aumenta, lo mismo que la eficiencia. En estos motores no existe la explosión de un gas, sino la combustión controlada del petróleo.


Los motores diesel eran más pesados por lo que en general se empleaban en grandes instalaciones, como barcos, ferrocarriles, plantas termoeléctricas, plantas industriales y camiones grandes. En la actualidad, también se usan en los automóviles.Wernher von Braun (1912-1977). Ingeniero alemán. Desarrollo el motor que hoy usan los aviones de propulsión a chorro o jets. En 1942, en parte gracias a sus esfuerzos, fue lanzado el primer cohete o misil, que empleaba uno de sus motores y que consistía en un tanque donde se quemaba un combustible con oxígeno, y los gases producidos a alta temperatura y presión eran expulsados en cierta dirección. Por la ley de la acción y la reacción de Newton, sobre el cohete obra una fuerza que lo impulsa y acelera. Es el mismo principio que se aplica en el movimiento de los cohetes de pólvora que inventaron los chinos hace muchos siglos (Figura 42).



[pic]

Figura 42. Esquema de uno de los cohetes de Von Braun.

Los motores de los aviones modernos, como no llevan su propio oxígeno, deben emplear parte de la energía de los gases calientes en mover una turbina que comprima el aire de la atmósfera para poder introducirlo en la cámara de combustión del motor.


Energía geotérmica


Existen en nuestro país numerosas regiones que cuentan con mantos de roca caliente de los que se podría extraer grandes cantidades de energía.


El problema radica en cómo extraer dicha energía de la roca. El método más simple y económico consiste en fracturar, por medio de explosiones nucleares subterráneas, una pequeña parte de la roca caliente, e inyectar agua y extraer vapor a alta temperatura que puede transformarse, por medio de turbinas, en trabajo mecánico o energía eléctrica. La roca también puede fracturarse con explosivos químicos, pero el costo aumentanotablemente. Cuando la roca se enfría, se fractura otra zona próxima y se continúa el proceso.


la energía eléctrica


En el capítulo de electricidad, tratamos de su desarrollo a través de los trabajos de Coulomb, Ohm, Ampère, Faraday y Maxwell.


La maravilla de este energético radica en que cualquier otra forma de energía puede transformarse en energía eléctrica, enviarla por un alambre y transformarla nuevamente en otra forma de energía. A esta flexibilidad se debe que la energía eléctrica se use cada vez más en los hogares, las fábricas y el campo.


Energía eléctrica a partir de energía mecánica. Un ejemplo es el dínamo de una bicicleta que transforma una rotación en la luz de su lámpara eléctrica. En este principio (ley de Faraday) se basa la producción de la energía eléctrica producida por las grandes caídas de agua de las presas.


En las plantas termoeléctricas, la energía química del petróleo se transforma en energía mecánica por medio de grandes motores Diesel y ésta a su vez se transforma en energía eléctrica por medio de generadores o dínamos.


Energía eléctrica de la energía química. En las pilas eléctricas y en los acumuladores, la energía química se transforma directamente en energía eléctrica.


Energía eléctrica a partir de energía radiante. Las placas de silicio y otros elementos, al recibir energía radiante, la transforman directamente en energía eléctrica. Por este método trabajan sin baterías algunas pequeñas calculadoras, exposímetros de fotógrafos y satélites de comunicaciones.


Si en el futuro se lograproducir estas placas a precios bajos y se aumenta su vida útil ante grandes calentamientos y fenómenos meteorológicos, se podrá obtener de muchas zonas áridas una gran cantidad de energía eléctrica.


Energía eléctrica del calor. Si dos alambres de metales diferentes se sueldan en sus extremos, formando un anillo, y una de las soldaduras se coloca en contacto con un cuerpo caliente y la otra con un cuerpo frío, en el anillo se crea o se produce una corriente eléctrica. Estas uniones, llamadas termopares eléctricos, se emplean como termómetros para medir y controlar procesos industriales que se realizan en hornos a alta temperatura.


Energía nuclear en energía eléctrica. La energía producida en los reactores nucleares se emplea en producir vapor de agua a alta temperatura que a su vez se transforma en trabajo mecánico por medio de turbinas de vapor y posteriormente, por medio de dínamos, en energía eléctrica.


Política de privacidad