Consultar ensayos de calidad


El descubrimiento de los cuasares



EL DESCUBRIMIENTO DE LOS CUASARES

1.RADIOFUENTES CUASIESTELARES

EN LA década de los cincuenta los radioastrónomos descubrieron una multitud de objetos en el firmamento que emitían grandes cantidades de radiación en radiofrecuencias. Sin embargo, debido al problema de resolución de los radiotelescopios en aquella época, en la mayoría de los casos no era posible saber qué clase de objeto visible correspondía a esas radiofuentes. Las ondas de radio de muchas de estas radiofuentes provenían de un objeto compacto, puntual, como una estrella —a diferencia de los grandes lóbulos de las radiogalaxias.

En 1960, Thomas Matthews logró determinar con cierta precisión la posición de la radiofuente 3C48.1 Matthews le proporcionó esta información a Allan Sandage, quien inmediatamente, con el gran telescopio deMonte Palomar, buscó lo que había en dicha posición. En su libro The Red Limit, T. Ferris cita las palabras de Sandage:

|El objeto se veía como una débil estrellita azul; le tomé un espectro esa noche y salió la cosa más rara |


|que había yo visto jamás. Quité el espectrógrafo del telescopio y puse un fotómetro para examinar los |
|colores de esa extraña estrella. Los colores resultaron diferentes a los de cualquier objeto celeste que |
|hubiese observado antes ttodo era sumamente exótico! |

sEn que consistía lo exótico de 3C48? Por un lado, las cantidades relativas de luz roja, azul y violeta no se parecían a las de ninguna otra estrella conocida; en particular, había un exceso de luz violeta. Más increíbles aún resultaban las líneas espectrales. Como hemos visto en el capítulo anterior, cada elemento químico produce un patrón característico de líneas oscuras o luminosas —correspondientes a absorción o emisión de luz en ciertas frecuencias— en el espectro. Este patrón se halla determinado por la estructura atómica de cada elemento. Pues bien, para su sorpresa, Sandage y sus colegas del Tecnológico de California no pudieron identificar tni una sola línea del espectro de 3C48! sEstaba constituida esta estrella por elementos químicos desconocidos? Los astrónomos estaban azorados y realmente intrigados. La solución a este enigma, encontrada algunos años después, significó para la comunidad astronómica una verdadera conmoción. Pero no nos adelantemos a nuestrahistoria.

En aquella época se les ocurrió a los astrónomos un método para determinar con precisión las posiciones de las radiofuentes: mediante ocultaciones lunares. Cuando la Luna pasa delante de una radiofuente, se dejan de recibir las ondas. Puede medirse con exactitud el momento en que se corta la señal y, conociendo la órbita lunar, obtener así la posición precisa. Este método es más exacto cuanto más lejos de la Vía Láctea se encuentra la fuente, pues habrá menos estrellas a su alrededor. En 1962, la Luna pasó delante de la radiofuente 3C 273, y Cyril Hazard y sus colegas australianos aprovecharon la ocultación para medir su posición. La estrella visible que emitía las ondas de radio resultó ser la más brillante de la región; el astrónomo Maarten Schmidt obtuvo su espectro y se encontró con el mismo tipo de objeto extraño que 3C48 tIndescifrable!

Conforme fueron identificándose más radioestrellas el misterio se fue profundizando. El término radioestrella se cambió por el de radiofuente cuasi-estelar,2 que expresaba la idea de que se trataba de objetos distintos a las demás estrellas. Este nombre se abrevió para dar al término en inglés quasar (en español cuasar).

Jesse Greenstein y Maarten Schmidt se dedicaron a pensar en el problema de la explicación de los espectros de los cuasares durante mucho tiempo. Una de las ideas que se les ocurrió, ya al borde de la desesperación, fue que todas las líneas de emisión estuviesen desplazadas en longitud de onda por el efecto Doppler, debido al movimiento de loscuasares (recordemos la Figura 10). Descartaron la idea por disparatada, pero no encontraron ninguna otra explicación. Más adelante, Greenstein comentaría: 'Fue un caso típico de autoinhibición de la creatividad por exceso de conocimientos formales.'

Más de un año más tarde, en 1963, Schmidt regresó a esta idea, la aplicó al espectro de 3C273 y se dio cuenta de que sus líneas de emisión correspondían al patrón de las líneas espectrales del hidrógeno, bajo la suposición de que el cuasar se alejase de nosotros a una velocidad de 47 000 kilómetros por segundo, es decir, más de un décimo de la velocidad de la luz. Ninguna estrella de nuestra galaxia podría moverse a esa velocidad, pues habría escapado de la galaxia hace mucho tiempo (además de que ninguna estrella tiene un espectro de emisión similar al de los cuasares, ni emite una cantidad importante de energía en radiofrecuencias). La misma idea podía explicar el espectro de 3C48, en el que se observaban las líneas del espectro del hidrógeno, desplazadas en longitud de onda debido a una velocidad de recesión de 37% la velocidad de la luz.

Diez años después se conocían 200 cuasares, y en la actualidad se conocen cerca de 3 000. Todos ellos tienen líneas espectrales altamente desplazadas hacia el lado rojo del espectro. En todos los casos, el corrimento al rojo implica velocidades de recesión mayores a un 10% de la velocidad de la luz.

El corrimiento al rojo se denota con la letra Z, y vale la pena dar aquí su definición rigurosa. El corrimiento en longitudesde onda de las líneas se puede conocer directamente del espectro, midiendo la longitud de onda de una cierta línea espectral observada (por ejemplo, la línea de Balmer, Hα, del hidrógeno), y comparándola con la longitud de onda de esta línea para un gas en emisión en el laboratorio (en reposo). Llamemos a la longitud de onda de la línea emitida en reposo λ e, y a la longitud de onda de la línea observada del cuasar, λO. El corrimiento al rojo será la diferencia λe — λo y se define Z como

[pic]

Según esta definición, 3C273 tiene un corrimiento al rojo de Z = 0.160 y es el cuasar de menor corrimiento al rojo. El de mayor corrimiento conocido hasta el momento de escribir estas líneas, el cuasar Q0051-279, tiene un corrimiento de Z = 4.43, lo cual implica que se aleja de nosotros a una velocidad cercana a la de la luz (la velocidad es v = 0.917 c).3 sCómo interpretar todo esto? La manera natural es suponer que los cuasares, al igual que las galaxias, se alejan de nosotros debido a la expansión del Universo y, por tanto, obedecen la ley de Hubble. Como vimos en el primer capitulo, según la ley de Hubble, cuanto mayor es la velocidad de recesión de un objeto, a mayor distancia se encuentra de nosotros. Si aplicamos esta ley a los cuasares, resulta ser que son los objetos más distantes de nosotros conocidos en el Universo; 3C 273, el cuasar más cercano, se encuentra a 3 mil millones de años luz; la luz que vemos en este momento, salió del cuasar cuando aún no existía la vida en la Tierra. Un cuasar que se aleja de nosotroscon una velocidad cercana a la de la luz, como PKS 2000-330, se encuentra en los confines del Universo observable.

Pero esta explicación, lejos de resolver todas las dudas, planteó nuevas y fascinantes interrogantes: conociendo la distancia, podemos calcular la luminosidad intrínseca de un cuasar; por ejemplo, resulta que 3C 273 tiene una luminosidad equivalente a cinco billones de soles. Si colocáramos una galaxia gigante, con sus miles de millones de estrellas, a la distancia de los cuasares más lejanos, no la veríamos. Para ser visible, un cuasar debe tener la luminosidad de cien galaxias juntas, y aún así se ve como una estrella diminuta! sQué los hace brillar tanto que los podamos ver desde los confines del Universo? Esta es la pregunta que los astrónomos han intentado contestar en los últimos veinte años.

2. OBJETOS ÓPTICOS CUASIESTELARES

Aunque los cuasares fueron descubiertos por su radioemisión, ésta es siempre de menor intensidad que la radiación óptica. Cuando los astrónomos se dieron cuenta de que los cuasares se identificaban ópticamente con aparentes estrellas con excesos de color azul y violeta, se dedicaron a buscar en los catálogos de estrellas azules. Varios de estos objetos resultaron ser cuasares, ya que mostraban en sus espectros de emisión líneas con alto corrimiento al rojo, aunque algunos no tenían radioemisión. Hoy se sabe que, de hecho, la mayoría de los cuasares no tienen fuerte radioemisión: son fuentes ópticas cuasiestelares que, para evitar confusión, se designan también con elnombre de cuasares.

De los cuasares identificados ópticamente, 15 resultaron ser objetos de un catálogo de objetos azules elaborado en los años cincuenta por los astrónomos mexicanos Enrique Chavira y Braulio Iriarte, usando una técnica desarrollada por Guillermo Haro. Estos cuasares llevan el nombre del Observatorio de Tonantzintla y se designan por las siglas TON seguidas del número de catálogo. Otros 80 cuasares están listados en el catálogo elaborado por Haro y Luyten con el telescopio de Monte Palomar y llevan la denominación PHL (Palomar-Haro-Luyten). Existen varios catálogos y listas de cuasares, tanto de radio como ópticos; algunas veces un mismo objeto aparece en dos o más catálogos; por ejemplo, TON 469 (Figura 36) es también la radiofuente 3C 232.

[pic]

Figura 36. Representación gráfica del espectro del cuasar TON 469 (3C232). Espectro del Observatorio de San Pedro Mártir, B.C. N.

La radiación de los cuasares no se limita a las frecuencias de radio y ópticas; de hecho la mayor parte de la energía es radiada en el infrarrojo y algunos cuasares son potentes fuentes de rayos X.

Otra propiedad importante de los cuasares es la variabilidad de su brillo con el tiempo. Todos los cuasares tienen una luminosidad variable, algunos aumentan —o disminuyen— su brillo notablemente en lapsos del orden de un año. En algunos casos, el brillo puede aumentar al doble en sólo un día. Aunque estas variaciones se han estudiado sobre todo en el óptico, se observan en todas las frecuencias. Existe la tendenciaa que los tiempos más cortos de variabilidad se observen a más altas frecuencias (por ejemplo, tan sólo unos segundos en rayos X).

Para que un objeto pueda variar su brillo, debe transmitirse alguna señal a lo largo de ese objeto, y que, como un todo, aumente o disminuya su luminosidad coherentemente. La velocidad de dicha señal no puede exceder en ningún caso a la velocidad de la luz. Para una señal luminosa, la velocidad será c = d/t, donde d es el tamaño del objeto y t el tiempo en el cual se produce el cambio de luminosidad. De manera que, si un cuasar es variable con tiempos característicos de unos meses, sus dimensiones físicas son de unos meses luz. Y entonces regresamos al problema de lo que hace brillar un cuasar: squé puede emitir la energía de un billón de soles con las dimensiones del sistema solar? Por ahora dejaremos esta pregunta en suspenso.

3. ESPECTRO CONTINUO

Analizaremos ahora, por separado, la emisión del continuo (radiación emitida en forma continua en todas las frecuencias) y, posteriormente, las líneas espectrales (emisión y absorción en frecuencias determinadas). Cada tipo de radiación obedece a procesos físicos diferentes y, por consiguiente, su análisis nos dará distinta información en cada caso.

La emisión de radio de los cuasares está polarizada, de donde se concluye que, como en el caso de las radiogalaxias, se trata de radiación sincrotrónica. Además, existe una correlación entre los tiempos de variabilidad y la longitud de onda a la que se observan; esto esprecisamente lo que se predice para la radiación sincrotrónica.

Tomemos como ejemplo nuevamente el caso de 3C 273. De 1963 a 1966 aumentó su luminosidad en radio constantemente, luego declinó por un tiempo, perdiendo aproximadamente la mitad de lo que había ganado, hasta que incrementó de nuevo su luminosidad en 1967.

Desde entonces ha variado erráticamente, aumentando y disminuyendo cada año. Pero lo importante es que estas variaciones están correlacionadas con la longitud de onda: en general, cuando el cuasar aumenta su brillo, el cambio se observa primero en longitudes de onda corta y, más tarde, en longitudes de onda larga. Esto es consistente con la siguiente interpretación: si las nubes de electrones relativistas con campos magnéticos, responsables de la emisión sincrotrónica, son aceleradas por algún mecanismo —hasta ahora desconocido— del núcleo del cuasar hacia afuera, el aumento súbito de luminosidad ocurrirá cada vez que sea eyectada una de estas nubes. Al principio, la nube contiene electrones de muy alta energía, que radian en altas frecuencias —o bajas longitudes de onda—. Gradualmente los electrones van perdiendo energía y, por ello, empiezan a radiar a mayores longitudes de onda. Además, las nubes se van expandiendo, volviéndose más tenues y transparentes a la radiación de ondas largas.

La idea de tener nubes eyectadas desde el núcleo proviene del hecho de que, como en el caso de las radiogalaxias, algunos cuasares tienen radiolóbulos asociados y chorros de material que emanan del núcleo. En elcapítulo V regresaremos a este tema más en detalle. En el caso de 3C 273, se observa ópticamente un chorro de gas parecido al que emana del núcleo de Virgo A (Figura 47).

La mayor parte de la energía de los cuasares en el espectro continuo es emitida en el infrarrojo. Nuestro ya conocido cuasar 3C 273 emite el 90% de su energía en forma de radiación infrarroja (lo cual equivale a más de cien mil veces la energía que emite nuestra galaxia en el óptico).

Realizar observaciones en el infrarrojo es extremadamente difícil pues no existe en la actualidad ningún tipo de detector suficientemente sensible al infrarrojo como para obtener imágenes semejantes a las fotografías. Por lo que respecta a las técnicas de interferometría usadas en el radio, ya hemos descrito cuáles son las dificultades de aplicarlas a longitudes de onda más cortas, aunque ciertas técnicas de interferometría infrarroja están empezando a desarrollarse y a aplicarse en astronomía.

Existen otros dos factores que limitan de manera determinante la realización de observaciones infrarrojas. El primero de ellos es la absorción de esta radiación por las diversas moléculas de la atmósfera terrestre (principalmente, el vapor de agua). El segundo factor limitante es la emisión de la propia atmósfera y del telescopio. Prácticamente todos los cuerpos emiten radiación térmica y ésta es máxima en el infrarrojo para temperaturas entre 0 y 30 grados centígrados. Como el aire cercano a la superficie de la Tierra, el edificio, el telescopio y hasta el astrónomo seencuentran a estas temperaturas, también contribuirán a la radiación que ve el detector, de manera que discernir la débil radiación proveniente de los cuerpos celestes en esas condiciones es como tratar de hallar una aguja en un pajar.

Con respecto al primer problema, debido a la falta de transparencia de la atmósfera, sólo podemos observar desde la Tierra el 'cercano infrarrojo', hasta una longitud de onda de unas 10 μm.4 Sin embargo, el grueso de la radiación de los cuasares es emitida alrededor de 100 μm. La solución es alejarse de la atmósfera terrestre y realizar observaciones desde el espacio. De los telescopios espaciales hablaremos en el siguiente capítulo. Con respecto al segundo problema, la solución es valerse de sistemas de aislamiento y enfriamiento adecuados alrededor del detector. Usualmente, esto se logra aislando el detector en recipientes enfriados con nitrógeno o helio líquidos, con lo que se logran temperaturas de unos 180 a 270 grados centígrados bajo cero, respectivamente.

Pero lo más difícil de todo es responder a la pregunta de scuál es el origen de la radiación infrarroja de los cuasares? La primera posibilidad es, desde luego, que se trate de radiación no térmica —sincrotrónica— igual que la de radio, bajo la hipótesis de que todo el espectro continuo es de radiación sincrotrónica. Sin embargo, esta hipótesis encuentra algunas dificultades, pues para explicar el exceso de radiación infrarroja observado se necesitaría una cantidad enorme de electrones con energías de aproximadamente un ergiopor electrón. Si la energía fuese un poco menor o mayor, los electrones radiarían en radiofrecuencias o en luz visible. Resulta difícil de entender por qué la mayoría de los electrones habrían de tener preferencialmente esa energía de un ergio.

Otra posibilidad es que la radiación infrarroja provenga de la emisión de granos de polvo en los cuasares o alrededor de ellos. En el Universo se ha encontrado polvo caliente en la vecindad de las estrellas. En algunos casos este polvo está compuesto por residuos de la nube original de donde se formó la estrella, mientras que en otros, el polvo se formó del gas que, debido a los procesos de la evolución estelar, la propia estrella ha arrojado. Claro que los cuasares no son estrellas y las analogías son peligrosas; sin embargo, se sabe que las partículas de polvo absorben la luz que incide sobre ellas, se calientan y reemiten parte de la luz incidente en el infrarrojo. Además del polvo caliente, existen grandes cantidades de polvo frío en nuestra galaxia y en otras galaxias, y ambos tipos de polvo son emisores eficientes de radiación infrarroja.

Por último, otro proceso que puede producir emisión infrarroja es la radiación de los electrones libres que se frenan o aceleran al interactuar entre sí en un gas ionizado.

Es muy difícil distinguir, a partir de las observaciones, cuál de estos procesos es el responsable de la emisión infrarroja de los cuasares; quizás los tres intervengan.

 

|Por lo que respecta al resto de la emisión del continuo, a longitudes deonda más cortas —óptico, |
|ultravioleta y rayos X— podemos afirmar que hay también, seguramente, diversos procesos físicos y |
|mecanismos de emisión involucrados, algunos de los cuales analizaremos en el capítulo VI. Sin embargo, |
|existe una evidencia muy fuerte para suponer que, al menos una buena parte de esa energía es radiación no |
|térmica (sincrotrónica): el hecho de que la distribución de la energía radiada en distintas frecuencias |
|obedece a lo que se conoce como una ley exponencial. Esto significa que podemos expresar la intensidad de |
|la radiación a una cierta frecuencia, en términos de esa frecuencia elevada a un cierto exponente (o |
|potencia). Para expresar esto en forma matemática se utiliza la siguiente fórmula: donde Iναν a, Iv, es la|
|intensidad de la radiación medida en la frecuencia v, α es el signo de proporcionalidad, la frecuencia a |
|la cual se mide la intensidad y α número que es el exponente o potencia al cual está elevada la |
|frecuencia. Si se hace una gráfica del logaritmo de la intensidad de la radiación contra el logaritmo de |
|la frecuencia, se obtiene una recta (Figura 37(a)). Este tipo de distribución de energía es 'la firma' |
|característica de la radiación sincrotrónica. Al exponente a se le conoce como el índice espectral y puede|
|no ser el mismo para diversos rangos de frecuencia (Figura 37(b)). También puede haber ligeras |
|deformaciones locales de la forma de las rectas, lo cual indica que otros procesosfísicos, además de la |
|radiación sincrotrónica, están contribuyendo a la emisión de manera importante. |

[pic]

Figura 37. Distribución del flujo de fotones del conjunto de los cuasares 3C249.1 (a) TON 469 (b) desde el infrarrojo hasta el ultravioleta. Se grafica logaritmo de frecuencia (en Hertz) contra logaritmo del flujo (en unidades llamadas milijanskys). La distribución se describe mediante una ley exponencial, Fνανα. En (a) tenemos un solo índice α, en (b) varias.

 

4. ESPECTRO DE LÍNEAS DE EMISIÓN

Un espectro de líneas de emisión delata siempre la presencia de un gas de muy baja densidad expuesto a una fuente de radiación ionizante. Los cuasares poseen esta fuente; no sabemos qué es, pero es la misma que produce electrones relativistas. Acabamos de ver que la fuente produce radiación en todas las frecuencias, desde el radio hasta los rayos X. Para ionizar átomos de hidrógeno —el elemento predominante en un 70% en el Universo— se requiere radiación ultravioleta. Del hecho de que podemos detectar parte de esta radiación ultravioleta directamente, deducimos que no toda es absorbida por los átomos del gas circundante. Esto quiere decir que dicho gas no puede cubrir toda la fuente de radiación ultravioleta, sino que debe estar distribuido a su alrededor en forma de nubes —o filamentos— que la ocultan sólo parcialmente. En las nubes los átomos del gas absorben la radiación ultravioleta, se ionizan y emiten en las frecuencias de las líneas espectrales observadas.

Lacaracterística más sorprendente de las líneas espectrales de los cuasares es que son muy anchas, mucho más que las producidas por las nubes de gas ordinarias en el espacio interestelar de nuestra galaxia o de otras. sQué información nos da el ancho de las líneas? Debido a la temperatura, que es del orden de diez mil grados, los átomos del gas en las nubes se hallan en continuo movimiento. Dicho movimiento es azaroso y por ello algunos átomos se moverán hacia el observador y otros se alejarán de él, emitiendo fotones con frecuencias ligeramente corridas al azul y rojo respecto de la frecuencia central de la línea (la frecuencia emitida por el átomo en reposo). Estos corrimientos producen un ensanchamiento de la línea (Figura 38), llamado ensanchamiento Doppler térmico ('térmico' porque se debe a la temperatura). A diez mil grados, este efecto produce un ensanchamiento de aproximadamente 0.1 Å. Sin embargo, el ancho de las líneas de los cuasares llega a ser de varios cientos de angstroms (Figura 36). Esto se puede explicar si el corrimiento Doppler al azul y al rojo —respecto de la frecuencia central— se debe no a un movimiento microscópico, como el de los átomos, sino a un movimiento macroscópico. Es decir, las nubes se mueven unas con respecto a otras. Este movimiento puede ser ordenado, como por ejemplo un movimiento de rotación de las nubes alrededor de la fuente central, o desordenado y azaroso. De cualquier modo, para producir el ancho observado en las líneas se requiere que las nubes se muevan a velocidades de entre 1 000 y20 000 km/seg.

[pic]

Figura 38 . El ancho de la línea se debe al movimiento azaroso de los átomos que la emiten. La longitud central,λc, es la de los átomos en reposo. Puesto que el movimiento de los átomos obedece a la temperatura el efecto se conoce como Dopler térmico.

Otra característica del espectro de emisión es la enorme variedad de grados de ionización de los elementos, lo que refleja una amplia gama de temperaturas del gas. Por ejemplo, se detectan líneas de hierro una vez ionizado —con un electrón de menos—, que se denota Fe II —F,eI es hierro neutro— y hierro quince veces ionizado —quince electrones desprendidos—, que se denota Fe XVI.

Las nubes de gas mencionadas antes poseen una masa de unas cien mil masas solares. Hay dos clases de nubes: las llamadas de alta densidad (entre l07 y 1011 electrones por centímetro cúbico) y las de baja densidad (entre l03 y l07 electrones por centímetro cúbico). Es importante darse cuenta que aun las nubes de alta densidad son menos densas que el vacío más perfecto que pueda conseguirse en un laboratorio terrestre. En las de baja densidad el gas puede emitir las llamadas líneas espectrales prohibidas. Éstas así se denominan debido a que las transiciones atómicas que las originan no pueden darse en condiciones terrestres. En las galaxias sólo se producen en el vacío casi perfecto del medio interestelar. En los cuasares estas líneas son más angostas que las permitidas, lo que indica que las nubes emisoras poseen velocidades entre 300 y 1 000 km/seg. Las líneasprohibidas se denotan mediante corchetes: por ejemplo: [O III] es la línea prohibida del oxígeno dos veces ionizado. A las líneas permitidas se les llama líneas anchas y a las prohibidas, líneas angostas, aunque aun estas últimas son mucho más anchas que las que provienen del medio interestelar.

Como un gas caliente tiende a expanderse, en un cuasar las nubes se disolverían sin un medio que las mantuviese confinadas. Por ello se piensa que se hallan inmersas en un gas tenue a varios millones de grados. Así, las nubes son condensaciones de material relativamente denso y frío.

Por último, señalaremos un punto de suma importancia. Haciendo a un lado el alto corrimiento al rojo y la alta luminosidad intrínseca, la forma del espectro de un cuasar no es algo único. De hecho, resulta ser idéntica a la forma del espectro de las galaxias de Seyfert (capítulo I) y asimismo a la del espectro óptico de las radiogalaxias. Las líneas y su estructura de ionización son las mismas, así como sus anchos. Además, es muy parecida la forma de la distribución del espectro continuo. Esta similitud proporcionó, por vez primera, una clave sobre la naturaleza de los cuasares. Sobre este punto hemos de volver en el capítulo VI.

5. ESPECTRO DE LÍNEAS DE ABSORCIÓN

Además del espectro de emisión, algunos cuasares muestran líneas de absorción. Los corrimientos en frecuencia de estas líneas de absorción son siempre menores que los corrimientos de las líneas de emisión. Esto se puede explicar de dos maneras: 1) que el material queproduce la absorción es material proveniente del cuasar —nubes de gas relativamente frío y exterior a la región de emisión— que se expande, y 2) se trata de material externo, ajeno al cuasar, situado en el camino entre éste y nosotros.

En el primer caso, el observador verá absorción de aquellas nubes que estén frente a él, y éstas tendrán un movimiento en dirección del observador: por tanto introducirán una componente de corrimiento al azul, y tendrán un valor de Z menor. Las líneas así producidas son muy anchas y se encuentran en el extremo azul de las líneas de emisión correspondientes. Este tipo de líneas son típicas de atmósferas en expansión de las estrellas. La explicación se ilustra en estas páginas (Figura 39).

[pic]

Figura 39 (a). Líneas tipo 'P Cygni', así llamadas por haberse observado por primera vez en la estrella P del Cisne. El observador ve el material eyectado hacia él en absorción pues tiene la atmósfera delante y esta absorción estará corrida al azul. Una buena parte del material que se mueve alejándose del observador queda oculto de éste; por ello la línea de emisión (corrida al rojo) es más angosta.

[pic]

Figura 39(b). Líneas P Cygni en el cuasar PHL 5200, la velocidad de eyección del material es de v = 10 000 km/seg.

En el segundo caso, las líneas de absorción son más angostas y están despegadas de las de emisión. Las diferencias en Z —entre la emisión y la absorción— son grandes y frecuentemente se repiten las mismas líneas de absorción con diferentes corrimientos, lo cualse interpreta como la intervención de varias nubes de material absorbente intergaláctico a distintas distancias entre el cuasar y nosotros. Mientras más lejos están los cuasares, más sistemas —grupos de las mismas líneas con distintos corrimientos— de líneas de absorción tienden a observarse, lo que es lógico si pensamos que, mientras más distante es el cuasar, más material absorbente se acumulará entre él y nosotros.

NOTAS

1 Objeto núm, 48 del Tercer catálogo de radiofuentes elaborado en Cambridge, Inglaterra.

2 En inglés: quasi stellar radio source.

3 La velocidad de recesión se puede conocer a partir de Z (que es lo que se mide directamente), mediante la sencilla fórmula [pic](donde c es, como siempre, la velocidad de la luz). Esta fórmula es válida sólo para valores de Z mucho menores que uno. Para valores mayores, es necesario usar una fórmula que tome en cuenta tanto los efectos relativistas como la variación con el tiempo de la velocidad de recesión. Si esta velocidad fuera estrictamente constante (que no lo es) entonces:

[pic]

4 La micra se abrevia μm y es igual a una diezmilésima de centímetro.


Política de privacidad