PROTOCOLO DE DIAGNOSTICO Y TRATAMIENTO DE HERPES
SIMPLE
CODIGO CIE 10
B00 HERPES SIMPLE
1.- DEFINICIÓN: La infección diseminada por Herpes Simple es una infección
sistémica por HSV potencialmente mortal, caracterizada por vesículas muco
cutáneas diseminadas, pústulas, erosiones y ulceraciones, asociadas con signos
de neumonía, encefalitis, hepatitis.
2.- OBJETIVOS:
a–S Diagnosticar y tratar adecuada y oportunamente al paciente portador de
Herpes Simple.
a–S Usar tratamientos farmacológico.
a–S Evitar la progresión de la enfermedad y/o
complicaciones.
NIVELES DE ATENCIÓN:
a–S Atención ambulatoria: Pacientes controlados.
a–S Hospitalizados: Pacientes complicados o su estado
lo requiere.
a–S Terapia Inadecuada aplicada anteriormente.
a–S Cuadro no controlado considerando los Items
anteriores.
a–S Coexistencia de otras enfermedades de difícil
control.
a–S Factores de riesgo.
EPIDEMIOLOGIA - ETIOLOGÍA:
a–S Edad: Cualquier edad.
a–S Etiología: Virus Herpes Simple tipo 1 y 2.a–S
Factores de riesgo: Pacientes con inmunosuficiencia, inmunosupresión,
transplante, enfermedad malignas hematológicas.
CRITERIOS DE DIAGNOSTICOS:
a–S Erosiones muco cutánea sensibles y dolorosas.
a–S Presencia úlceras, vesículas, pústulas, costras.
a–S Distribución: Generalizada diseminada, el sitio de
infección recurrente por HSV por ejemplo labial, oro faríngeo, genital etc.
MENEJO – PROCEDIMEITNO:
a–S Prueba de Tzanck: Se ven células gigantes multinucleadas.
a–S Cultivos.
a–S Microscopia Electrónica: Cuando se disponer de
esta técnica la tinción negativa de una preparación proveniente de las lesiones
revela virus herpes simple.
TRATAMIENTO:
a–S Profilaxis: Dar Aciclovir a pacientes seropositivos sometidos a transplante
de medula ósea. 5 mg x kg. EV.
C/ 8 horas o 200 mg VO C/ 6 horas a partir del día del
transplante x 4 - 6 semanas.
a–S Vidarabina: 15 mg. x kg EV diario durante 10 a 14
días.
101
102
R. S. GUPTA
Brucella, Bartonella) are adapted to intracellular life style and are major
human and animal pathogens (Moreno & Moriyon 2001; Kersters et al. 2003; Yu
& Walker 2003). The α-proteobacteria exhibit enormous diversity in
terms of their morphological and metabolic characteristics and they include
numerous phototrophs, chemolithotrophs and chemoorganotrophs (Stackebrandt et
al. 1988; De Ley 1992; Kersters et al. 2003). This group also harbors all known
aerobic photoheterotrohic bacteria, which contain bacteriochlorophyll a, but
are unable to grow photosynthetically under anaerobic conditions (Yurkov &
Beatty 1998). These bacteria are abundant in the upper layers of oceans (Kolber
et al. 2001). The α-proteobacterial species are presently recognized on
the basis of their branching pattern in the 16S rRNA trees, where they form a
distinct clade within the proteobacterial phylum (Woese et al.1984; Stackebrandt
et al. 1988; Olsen et al. 1994; Gupta 2000; Kersters et al. 2003). This group
has been given the rank of a Class or subdivision within the Proteobacteria
phylum (Stackebrandt et al. 1988; Murray et al. 1990; De Ley 1992; Stackebrandt
2000; Ludwig & Klenk 2001; Garrity & Holt 2001; Kersters et al. 2003).
Other than their distinct branching in the 16S rRNA or other phylogenetic trees
(De Ley 1992; Viale et al. 1994; Eisen 1995; Gupta et al. 1997; Gupta 2000;
Stepkowski et al. 2003; Emelyanov 2003a; Battistuzzi et al. 2004), there is no
reliable phenotypic or molecular characteristic known at present that is
uniquely shared by different α-proteobacteria which distinguish them from
all other bacteria (Kersters et al. 2003). On the basis of 16S rRNA trees the
α-proteobacteria have been divided into seven main subgroups or orders
(viz. Caulobacterales, Rhizobiales, Rhodobacterales, Rhodospirillales,
Rickettsiales, Sphingomondales, and Parvularucales) (Maidak et al. 2001;
Garrity & Holt 2001; Kersters et al. 2003). However, the branching order
and interrelationships among these subgroups are presently not resolved and no
distinctive features that can distinguish these groups from each other are
known (Kersters et al. 2003). In our recent work, we have been utilizing a new
approach based on identiï¬cation of conserved indels (also referred to as
signatures) in proteins sequences that is proving very useful in identifying
different groups within Bacteria in clear molecular terms and clarifying
evolutionary relationships among them (see www.bacterialphylogeny.com) (Gupta
1998, 2003, 2004;Grifï¬ths & Gupta 2002, 2004a; Gupta & Grifï¬ths
2002; Gupta et al. 2003). We have previously described many protein signatures
that are distinctive characteristics of the proteobacterial phylum and which
also provided information regarding its branching position relative to other
bacterial groups (Gupta 1998, 2000; Grifï¬ths & Gupta 2004b). This review
focuses on examining the evolutionary relationships among α-proteobacteria
using the signature sequence as well as traditional phylogenetic approaches. In
recent years, complete genomes of several α-proteobacteria (viz.
Bartonella henselae, Bart. quintana, Bradyrhizobium japonicum, Brucella
melitensis, Bru. suis, Caulobacter crescentus, Mesorhizobium loti,
Sinorhizobium loti, Rhodopseudomonas palustris, Agrobacterium tumefaciens,
Rick-
ettsia conorii, Ri. prowazekii, Ri. typhi, and Wolbachia sp. (Drosophila
endosymbiont)) have become available (Andersson et al. 1998; Kaneko et al.
2000, 2002; Nierman et al. 2001; Wood et al. 2001; Ogata et al. 2001; Galibert
et al. 2001; DelVecchio et al. 2002; Paulsen et al. 2002; Larimer et al. 2004;
McLeod et al. 2004). These provide valuable resources for identifying novel
molecular features that are likely distinctive characteristics of α-proteobacteria
and its various subgroups, and which may prove helpful in clarifying the
evolutionary relationships among them. This article, describes for the ï¬rst
time, a large number of conserved indels in widely distributed proteins that
are either uniquely shared by all α-proteobacteria, or which are shared by
only particular subgroups (i.e., families or orders) of this Class.
Thesesignatures provide novel and deï¬nitive molecular means for distinguishing
α-proteobacteria and many of its subgroups from all other bacteria. The
distribution of these signatures in different α-proteobacteria also
enables one to logically deduce the relative branching orders and
interrelationships among different α-proteobacteria subgroups.
Phylogenetic studies have also been carried out based on 16S rRNA and a number
of proteins sequences. Based on this information, a detailed model for the
evolutionary relationships among α-proteobacteria has been d
a–S Formas Leves: Dar tratamiento solo tópico
Antinflamatorios y antiviricos.