Consultar ensayos de calidad


Protocolo de diagnostico y tratamiento de herpes simple - epidemiologia - etiologÍa, criterios de diagnosticos, tratamiento



PROTOCOLO DE DIAGNOSTICO Y TRATAMIENTO DE HERPES SIMPLE

CODIGO CIE 10
B00 HERPES SIMPLE

1.- DEFINICIÓN: La infección diseminada por Herpes Simple es una infección sistémica por HSV potencialmente mortal, caracterizada por vesículas muco cutáneas diseminadas, pústulas, erosiones y ulceraciones, asociadas con signos de neumonía, encefalitis, hepatitis.

2.- OBJETIVOS:

a–S Diagnosticar y tratar adecuada y oportunamente al paciente portador de Herpes Simple.
a–S Usar tratamientos farmacológico.
a–S Evitar la progresión de la enfermedad y/o complicaciones.

NIVELES DE ATENCIÓN:

a–S Atención ambulatoria: Pacientes controlados.
a–S Hospitalizados: Pacientes complicados o su estado lo requiere.
a–S Terapia Inadecuada aplicada anteriormente.


a–S Cuadro no controlado considerando los Items anteriores.
a–S Coexistencia de otras enfermedades de difícil control.
a–S Factores de riesgo.

EPIDEMIOLOGIA - ETIOLOGÍA:

a–S Edad: Cualquier edad.
a–S Etiología: Virus Herpes Simple tipo 1 y 2.a–S Factores de riesgo: Pacientes con inmunosuficiencia, inmunosupresión, transplante, enfermedad malignas hematológicas.

CRITERIOS DE DIAGNOSTICOS:

a–S Erosiones muco cutánea sensibles y dolorosas.
a–S Presencia úlceras, vesículas, pústulas, costras.
a–S Distribución: Generalizada diseminada, el sitio de infección recurrente por HSV por ejemplo labial, oro faríngeo, genital etc.

MENEJO – PROCEDIMEITNO:

a–S Prueba de Tzanck: Se ven células gigantes multinucleadas.
a–S Cultivos.
a–S Microscopia Electrónica: Cuando se disponer de esta técnica la tinción negativa de una preparación proveniente de las lesiones revela virus herpes simple.

TRATAMIENTO:

a–S Profilaxis: Dar Aciclovir a pacientes seropositivos sometidos a transplante de medula ósea. 5 mg x kg. EV. C/ 8 horas o 200 mg VO C/ 6 horas a partir del día del transplante x 4 - 6 semanas.
a–S Vidarabina: 15 mg. x kg EV diario durante 10 a 14 días.



101


102

R. S. GUPTA

Brucella, Bartonella) are adapted to intracellular life style and are major human and animal pathogens (Moreno & Moriyon 2001; Kersters et al. 2003; Yu & Walker 2003). The α-proteobacteria exhibit enormous diversity in terms of their morphological and metabolic characteristics and they include numerous phototrophs, chemolithotrophs and chemoorganotrophs (Stackebrandt et al. 1988; De Ley 1992; Kersters et al. 2003). This group also harbors all known aerobic photoheterotrohic bacteria, which contain bacteriochlorophyll a, but are unable to grow photosynthetically under anaerobic conditions (Yurkov & Beatty 1998). These bacteria are abundant in the upper layers of oceans (Kolber et al. 2001). The α-proteobacterial species are presently recognized on the basis of their branching pattern in the 16S rRNA trees, where they form a distinct clade within the proteobacterial phylum (Woese et al.1984; Stackebrandt et al. 1988; Olsen et al. 1994; Gupta 2000; Kersters et al. 2003). This group has been given the rank of a Class or subdivision within the Proteobacteria phylum (Stackebrandt et al. 1988; Murray et al. 1990; De Ley 1992; Stackebrandt 2000; Ludwig & Klenk 2001; Garrity & Holt 2001; Kersters et al. 2003). Other than their distinct branching in the 16S rRNA or other phylogenetic trees (De Ley 1992; Viale et al. 1994; Eisen 1995; Gupta et al. 1997; Gupta 2000; Stepkowski et al. 2003; Emelyanov 2003a; Battistuzzi et al. 2004), there is no reliable phenotypic or molecular characteristic known at present that is uniquely shared by different α-proteobacteria which distinguish them from all other bacteria (Kersters et al. 2003). On the basis of 16S rRNA trees the α-proteobacteria have been divided into seven main subgroups or orders (viz. Caulobacterales, Rhizobiales, Rhodobacterales, Rhodospirillales, Rickettsiales, Sphingomondales, and Parvularucales) (Maidak et al. 2001; Garrity & Holt 2001; Kersters et al. 2003). However, the branching order and interrelationships among these subgroups are presently not resolved and no distinctive features that can distinguish these groups from each other are known (Kersters et al. 2003). In our recent work, we have been utilizing a new approach based on identiï¬cation of conserved indels (also referred to as signatures) in proteins sequences that is proving very useful in identifying different groups within Bacteria in clear molecular terms and clarifying evolutionary relationships among them (see www.bacterialphylogeny.com) (Gupta 1998, 2003, 2004;Grifï¬ths & Gupta 2002, 2004a; Gupta & Grifï¬ths 2002; Gupta et al. 2003). We have previously described many protein signatures that are distinctive characteristics of the proteobacterial phylum and which also provided information regarding its branching position relative to other bacterial groups (Gupta 1998, 2000; Grifï¬ths & Gupta 2004b). This review focuses on examining the evolutionary relationships among α-proteobacteria using the signature sequence as well as traditional phylogenetic approaches. In recent years, complete genomes of several α-proteobacteria (viz. Bartonella henselae, Bart. quintana, Bradyrhizobium japonicum, Brucella melitensis, Bru. suis, Caulobacter crescentus, Mesorhizobium loti, Sinorhizobium loti, Rhodopseudomonas palustris, Agrobacterium tumefaciens, Rick-

ettsia conorii, Ri. prowazekii, Ri. typhi, and Wolbachia sp. (Drosophila endosymbiont)) have become available (Andersson et al. 1998; Kaneko et al. 2000, 2002; Nierman et al. 2001; Wood et al. 2001; Ogata et al. 2001; Galibert et al. 2001; DelVecchio et al. 2002; Paulsen et al. 2002; Larimer et al. 2004; McLeod et al. 2004). These provide valuable resources for identifying novel molecular features that are likely distinctive characteristics of α-proteobacteria and its various subgroups, and which may prove helpful in clarifying the evolutionary relationships among them. This article, describes for the ï¬rst time, a large number of conserved indels in widely distributed proteins that are either uniquely shared by all α-proteobacteria, or which are shared by only particular subgroups (i.e., families or orders) of this Class. Thesesignatures provide novel and deï¬nitive molecular means for distinguishing α-proteobacteria and many of its subgroups from all other bacteria. The distribution of these signatures in different α-proteobacteria also enables one to logically deduce the relative branching orders and interrelationships among different α-proteobacteria subgroups. Phylogenetic studies have also been carried out based on 16S rRNA and a number of proteins sequences. Based on this information, a detailed model for the evolutionary relationships among α-proteobacteria has been d a–S Formas Leves: Dar tratamiento solo tópico Antinflamatorios y antiviricos.


Política de privacidad