Consultar ensayos de calidad


Tales de mileto y su idea de la ciencia




El pensador griego Tales en el año 600 a.C. se preguntó lo siguiente: sDe qué está compuesto el universo?, y dio una respuesta, “Todas las cosas son de agua”. Por supuesto la idea era incorrecta, pero aun así es uno de los enunciados más importantes en la historia de la ciencia, porque sin él —u Ver mas
El pensador griego Tales en el año 600 a.C. se preguntó lo siguiente: sDe qué está compuesto el universo?, y dio una respuesta, “Todaslas cosas son de agua”. Por supuesto la idea era incorrecta, pero aun así es uno de los enunciados más importantes en la historia de la ciencia, porque sin él —u otro equivalente— no habría ni siquiera lo que hoy entendemos por «ciencia».
No es para sorprenderse que haya dado esta respuesta, pues Tales nació y se crió en un mundo rodeado de mares y océanos.

El continente, la tierra firme, tenía, según Tales, la forma de un disco de algunos miles de millas de diámetro, flotando en medio de un océano infinito. Tampoco ignoraba que el continente propiamente dicho estaba surcado por las aguas. Había ríos que lo cruzaban, lagos diseminados aquí y allá y manantiales que surgían de sus entrañas. El agua se secaba y desaparecía en el aire, para convertirse luego otra vez en agua y caer en forma de lluvia. Había agua arriba, abajo y por todas partes.



En aquella época lo importante era construir templos y altares, inventar rezos y rituales de sacrificio, fabricar ídolos y hacer magia. Y lo malo es que nada podía descalificar este sistema. Porque supongamos que, pese a todo el ritual, sobrevenía la sequía o se desataba la plaga. Lo único que significaba aquello es que los curanderos habían incurrido en error u omitido algún rito; lo que tenían que hacer era volver a intentarlo, sacrificar más reses y rezar con más fruición.

En cambio, Tales sus discípulos plantearon una hipótesis (que era correcta), decían que universo funcionaba de acuerdo con leyes naturales que novariaban, y entonces sí que merecía la pena estudiar el universo, observar cómo se mueven las estrellas y cómo se desplazan las nubes, cómo cae la lluvia y cómo crecen las plantas, y además en la seguridad de que estas observaciones serían válidas siempre y de que no se verían alteradas inopinadamente por la voluntad de ningún dios.

Y entonces sería posible establecer una serie de leyes elementales que describiesen la naturaleza general de las observaciones. La primera hipótesis de Tales condujo así a una segunda: la razón humana es capaz de esclarecer la naturaleza de las leyes que gobiernan el universo.

Este pensamiento tan elemental en nuestra vida de hoy, fue la gran idea de Tales, de comenzar a estudiar, y explicar los fenómenos naturales a través de nuestra razón, observando y experimentando.































Cálculo integral nacimiento de una nueva historia.


El cálculo como hoy lo conocemos es sin duda el resultado de los cimientos en la matemática, la lógica, la geometría, el álgebra, la aritmética y la trigonometría. Todo lo anterior pasó por un arduo recorrido que comienza desde el conocimiento proporcionados por los filósofos hasta lo que conocemos en pleno siglo XXI como: Aristóteles, Platón, Tales de Mileto, Zenón y Pitágoras. “Para los antiguos griegos, los números eran cocientes de enteros así que la recta numérica tenía 'hoyos' en ella. Le dieron la vuelta a esta dificultad usando longitudes, áreas y volúmenes además de números ya que, para los griegos, no todas las longitudes eran números” y que por consiguiente concentraron sus pensamientos en los problemas matemáticos generados a raíz del porque del mundo al cual estaban sujetos. “Por ejemplo en el campo de lageometría, se dio la demostración del teorema de Pitágoras, además que fue hallado el método para conseguir la serie indefinida de ternas de números pitagóricos, que satisfacen la ecuación . Incluso se trabajó enormemente en la resolución y demostración de distintos problemas, como en la trisección de un ángulo, y en la cuadratura de áreas acotadas por una curva”


Luego gracias a las bases constituidas por Leucipo, Demócrito y Antifon los trabajos de Eudoxo alrededor del 370 a. C fueron satisfactorios al crear un método llamado exhaución o por agotamiento en donde nos muestra como “hallar el área del círculo, la longitud de la circunferencia y como consecuencia determinó el número pi. Además es el precursor del concepto de Suma de Riemann que permite definir con rigor la integral de una función en un intervalo” . Antecedentes del cálculo integral para el cálculo de áreas y volúmenes. Por otra parte Arquímedes alrededor de 225 a. C demuestra que “el área de un segmento de parábola es4/3 del área del triángulo con los mismos base y vértice y es igual a 2/3del área del paralelogramo circunscrito. Arquímedes construyó una secuencia infinita de triángulos empezando con uno de área A y añadiendo continuamente más triángulos entre los existentes y la parábola para obtener áreas A, A + A/4, A + A/4 + A/16, A + A/4 + A/16 + A/64, El área del segmento de la parábola es, por lo tanto: A(1 + 1/4 + 1/4² + 1/4³ + ) = (4/3)A.” Otros de los trabajoshecho por este personaje tan importante es que determinó el área de un espiral, en el cual es un ejemplo de cuadratura y sigue un procedimiento que en las nociones actuales, es prácticamente lo mismo de la integral de Riemann. “La espiral de Arquímedes es la curva que describe un punto material que se mueve con velocidad uniforme a lo largo de una semirrecta que gira con una velocidad angular uniforme alrededor de su extremo. La ecuación polar de una espiral de Arquímedes es de la forma ás¤= aθ, donde a > 0 es una constante. Teorema: El área del primer ciclo de una espiral es igual a una tercera parte del área del círculo circunscrito”.


“La herencia matemática griega pasó a los árabes de donde regresó a Europa ya en el siglo XII. En estos siglos se desarrolló sobre todo la aritmética y los comienzos del álgebra” . Pero hay que esperar hasta el siglo XIV, XV y XVI en donde comenzaron a notarse cambios significativos en la forma de hacer matemáticas y lograr avances que abren a nuevas perspectivas al hacer hincapié en el cálculo con la aparición de Nicolás Oresme quien introdujo la idea de función e hizo grandes aportes como: “enuncia las reglas para multiplicar o dividir una expresión racional y una irracional, proporcionó una regla para determinar la convergencia de una serie y hallar su suma, como también resolvió el problema de la suma de las series infinitas” . Después stevin, Valerio, kepler, el primero “es conocido como uno de los primerosexpositores de la teoría de las fracciones decimales, sustituye el método de exhaucion por su método que consiste en si la diferencia entre do magnitudes B y A se pueden hacer menor que cualquier cantidad arbitrariamente pequeña, entonces B = A” . El segundo quien publicó De quadratura parabolae resumiéndolo “desarrolló maneras de encontrar volúmenes y centros de gravedad de los sólidos utilizando los métodos de Arquímedes.” El tercero “hizo un trabajo sistemático en el que se usan técnicas infinitesimales para el cálculo de áreas y volúmenes Nova Stereometria doliorum vinariorum” luego gracias a las visiones de Galileo, Roberval, Torricelli y Cavalieri pudieron sus sucesores entrar al cálculo infinitesimal. “Roberval y Torricelli descubrieron independientemente un método para calcular tangentes por medio de consideraciones cinemáticas el cual se apoyan de dos ideas: en la primera es la de co
Política de privacidad