Consultar ensayos de calidad


The changing face of methodological - individualism



THE CHANGING FACE OF METHODOLOGICAL
INDIVIDUALISM
CÓD: 53073935
RESEÑA DEL AUTOR: Catedratico de Ciencias Sociales de la Universidad M¨alardalen. Su investigación centra en temas de Economía y ciencias políticas. Tiene publicaciones tales Como, The Limits of Public Choice: A Sociological Critique of the Economic Theory of Politics , Methodological Individualism
ANTECEDENTES: La primera definición del concepto en el ambito de la economía la estableció Schumpeter en 1908: el individualismo metodológico es una forma de analisis que se inicia siempre a partir del comportamiento individual. No obstante, ha sido el filósofo de la ciencia Karl Popper quien con mas fuerza (e impacto) ha sostenido que este principio debe ser la piedra angular de todas las ciencias sociales: todas las instituciones sociales y los fenómenos colectivos en realidad son abstracciones hipotéticas derivadas necesariamente de las decisiones de los individuos: “La tarea de de las ciencias sociales consiste en construir y analizar nuestros modelos sociológicos con todo cuidado en términos descriptivos o nominalistas, es decir, en términos de los individuos, de sus actitudes, expectativas, relaciones etc.” (Popper, 1957 Según este principio, los fenómenos sociales son producidos por la interacción (voluntaria o involuntaria) de los individuos. Esto no quiere decir que el resultado social haya sido buscado conscientementey que sea el mejor posible, sino que la conjunción de decisiones sociales conduce a un determinado tipo de fenómeno social. Intentar entender el fenómeno social como si las decisiones individuales no fueran relevantes equivaldría a renunciar a una verdadera explicación, ya que el fenómeno social quedaría descrito como una especie de caja negra.



PROBLEMATICA: En este articulo, el autor se centra en describir la batalla constante sobre la verdadera naturaleza de la sociedad que ha tenido lugar a lo largo de la historia del pensamiento social, y la mejor manera de entender y explicarlo; El autor desarrolla el individualismo metodológico, en todas sus características y con todos sus componentes, tomando al individuo como un conjunto de componentes que lo hacen decidir y elegir de acuerdo a ese conjunto y no solo desde su parte racional

HIPOTESIS DEL AUTOR:El autor plantea que no es fructífero concebir el individualismo metodológico como una corriente que busca la reducción de las leyes sociales. La alternativa mas fructífera, es ver el individualismo metodológico como principio de la explicación de los fenómenos sociales que tienen lugar en el entorno de los individuos. Separando el individualismo metodológico y el holistico se desdibujan las dos doctrinas ya que no aparecen como opuestas en su totalidad.

PRINCIPALES ARGUMENTOS QUE CORROBORAN O CONTRADICEN LA HIPÓTESIS:

PRINCIPALES RESULTADOS
POSTURA CRÍTICA:


II. LEARNING MOTION WITH AN ARTICULATED ARM
Machine
learning is one area where we expect algorithms inspired by attentional selection strategy to outperform conventional ones. There are several ways in which attention might facilitate learning. One is during learning; if shown a single image of a car embedded in a dense background ï¬lled with other objects, the learning algorithm does not know which features belong to the object of relevance (here the car) and which ones are incidental. If attention would segment the car from the rest of the scene, however, superior performance can be obtained. This is particu-

larly relevant to one-shot learning algorithms. The same is true during the recognition phase. Detecting the same car, say, under a different viewpoint, in a novel scene is much facilitated if an attentional selection strategy can segment the car from the background and just forward its associated features to the recognition module (see Rutishauser et al., 2004, for an illustration of this strategy). Of course, segmentation also helps in reducing the amount of data that must be memorized,thus improving learning speed. Picking the right information to he learned and ignoring the rest is probably one of the key functions of attentional selection. Indeed, the resultant bottleneck appears to be necessary for the utilization of some kinds of memory (Naveh-Benjamin and Guez, 2000). The test bed we use for exploring attentional learning is the control of a segmented arm moving around in a boxlike environment. It can pick up, move, and drop disks. At the most abstract level, the arm is used to solve various kinds of puzzles. The problem we explored was one of ordering various objects into target locations. This is equivalent to the Tower of Hanoi problem (Claus, 1884). In our version of this problem (see Fig. 4.2), we begin with an allotment of disks of various diameters. We assume that they have holes in their middle, that these disks are stacked in order of decreasing size (i.e., a larger disk must always be below a smaller one), and that the segmented arm can transfer the disks from one target stack to another one. The arm moves around the board and physically takes the top disk from each target and moves it to another stack, with the end goal of placing them in increasing size on a speciï¬c goal target. Various obstacles are placed on the board through which the arm cannot pass. The arm’s segments can overlap as it moves. We assume that the end effector, when placed over a target, takes or releases a single disk automatically. Our problem, then, is to manipulate the joints of the arm to move its endeffector between the appropriate targets in the correct order so as to solve the puzzle. The details of the articulated arm, the playing board, and targets are shown in Fig. 4.2. For our purposes, we give the arm segments minimal dynamics involving a maximum torque and a momentum/friction decay characteristic. These force relationships are solved by the logic subsystem using a set of torquechange equations similar to those described by (Uno et al., 1989) for modeling human limb control. Initially, the system has not yet learned to drive its joints, and so must use its logic/planning functions to solve the control problem via explicit equations. The threesegment arm has a complicated inverse kinematics

SECTION I. FOUNDATIONS


20
2

CHAPTER 4. SELECTIVE ATTENTION AS AN OPTIMAL COMPUTATIONAL STRATEGY

1.5

2
1
F2
3 4

F3

l 4

q3

l

q2
0.5
F1

l
1

0

3
-0.5

-1

1
-1.5

-2 -2

-1

0

1

2

Baskets

Obstacles

Reachable Area

FIGURE 4.2 The Tower of Hanoi problem arranged for solution
by an articulated arm. The arm must move between the marked targets without colliding with the solid obstacles. Outlined squares are the positions of the targets. Solid circles indicate obstacles around which the arm must navigate.

which requires an expensive optimization process to ï¬nd the best trajectory to move from a present position to a target position. The minimum torque-change model selects a conï¬guration out of the possible solutions that requires theminimum angular change of the arm segments to achieve. This is a very costly step in terms of required computational power, and so at ï¬rst the attention of the logic unit is taken up by this low-level fun
Política de privacidad