Consultar ensayos de calidad


Ley de enfriamiento de newton - medida del calor específico de una sustancia




Cuando la diferencia de temperaturas entre un cuerpo y su medio ambiente no es demasiado grande, el calor transferido en la unidad de tiempo hacia el cuerpo o desde el cuerpo por conducción, convección y radiación es aproximadamente proporcional a la diferencia de temperatura entre el cuerpo y el medio externo.

Donde a es el coeficiente de intercambio de calor y S es el area del cuerpo.
Si la temperatura T del cuerpo es mayor que la temperatura del medio ambiente Ta, el cuerpo pierde una cantidad de calor dQ en el intervalo de tiempo comprendido entre t y t+dt, disminuyendo su temperatura T en dT.
dQ=-m·c·dT


Donde m=r V es la masa del cuerpo (r es la densidad y V es el volumen), y c el calor específico.
La ecuación que nos da la variación de la temperatura T del cuerpo en función del tiempo es o bien,
Integrando esta ecuación con la condición inicial de que en el instante t=0, la temperatura del cuerpo es T0.

Obtenemos la relación lineal siguiente.
ln(T-Ta)=-k·t +ln(T0-Ta)
Despejamos T

 
Medida del calor específico de una sustancia
En la deducción anterior, hemos supuesto que el calor específico c no cambia con la temperatura, manteniéndoseaproximadamente constante en el intervalo de temperaturas en la que se realiza el experimento.
Si medimos la temperatura del cuerpo durante su enfriamiento a intervalos regulares de tiempo, y realizamos una representación grafica de ln(T-Ta) en función de t, veremos que los puntos se ajustan a una línea recta, de pendiente –k.

Podemos medir el area S de la muestra, determinar su masa m=r V mediante una balanza, y a partir de k calculamos el calor específico c
Pero tenemos una cantidad desconocida, el coeficiente a , que depende de la forma y el tamaño de la muestra y el contacto entre la muestra y el medio que la rodea. Sin embargo, para varias sustancias metalicas en el aire, a tiene el mismo valor si las formas y los tamaños de todas las muestras son idénticas. Así, se puede determinar a para una sustancia metalica de calor específico conocido y luego, emplear este valor para determinar el calor específico de otra sustancia metalica de la misma forma y tamaño.


En la experiencia simulada, la forma de las muestras ensayadas es cúbica de lado d. El area de las caras de un cubo es S=6d2 y su volumen V=d3. La expresión de la constante k sera ahora

La muestra que nos va a servir de referencia es el Aluminio cuyadensidad es rAl=2700 kg/m3 y calor específico cAl=880 J K·kg).
1. Determinamos en una experiencia el valor de kAl para una muestra de Aluminio de forma cúbica de lado d
2. Determinamos en otra experiencia la el valor de kx de una muestra de otro material, de densidad rx conocida, de calor específico cx desconocido, que tenga la misma forma cúbica y del mismo tamaño d.
Como el valor de a es el mismo. El valor del calor específico desconocido cx lo podemos obtener a partir de la siguiente relación.

 
Actividades
En primer lugar, tenemos que elegir el Aluminio como sustancia de referencia en el control selección titulado Material.
Introducimos los siguientes datos
La temperatura inicial T0 (menor de 100ºC) en el control de edición titulado Temperatura.
El tamaño de la muestra cúbica, la longitud de su lado d en cm, en el control de edición titulado Dimensión.
Se pulsa en el botón titulado Empieza
La temperatura ambiente se ha fijado en el programa interactivo, Ta=20ºC.
En la parte izquierda, se observa un cubo de aluminio y un termómetro que indica su temperatura. En la parte derecha del applet, se observa la evolución de su temperatura T a lo largo del tiempo t. Se toman medidas de la temperaturacada 50 s. Estas medidas se guardan en el control area de texto situado a la izquierda del applet.
Una vez que se han tomado todas las medidas se pulsa en el botón titulado Grafica.
Se representa en el eje vertical ln(T-T0), y en el eje horizontal el tiempo t en s. Se representan los datos 'experimentales' mediante puntos y la recta que ajusta a estos datos. El programa interactivo calcula y muestra el valor de la pendiente kAl.
Anotamos el valor de la pendiente, kAl, la densidad del Aluminio rAl=2700 kg/m3, y el calor específico del Aluminio cAl=880 J K·kg)
Tomamos ahora una muestra de otro metal de las mismas dimensiones seleccionandolo en el control de selección titulado Material.
Pulsamos el botón titulado Empieza.
Observamos la evolución de su temperatura T en función del tiempo t. Cuando se ha acabado de tomar los datos, se pulsa en el botón titulado Grafica. Apuntamos el valor de la pendiente de la recta kx y el valor de la densidad del material rx. Para obtener el valor del calor específico de muestra metalica cx aplicamos la fórmula

Ejemplo: Determinar el calor específico del Hierro conocido el calor específico del Aluminio.
1. Sustancia de referencia Aluminio
Temperatura inicial T0=100ºCTamaño de la muestra d=10 cm
Valor de la pendiente kAl=0.00530
Densidad rAl=2700 kg/m3
Calor específico cAl=880 Jl K·kg)
2. Sustancia Hierro
Temperatura inicial T0=100ºC
Tamaño de la muestra d=10 cm
Valor de la pendiente kx=0.00355
Densidad rx=7880 kg/m3.
El calor específico del Hierro es


Se calienta una placa expuesta al Sol
Consideremos una placa de area A y espesor e, que esta a la temperatura ambiente T0. La superficie de la placa de area A esta pintada de negro. En un instante dado, se expone al Sol que ilumina la placa con una intensidad constante de I W/m2. Vamos a determinar la evolución de la temperatura T de la placa a medida que transcurre el tiempo.

Supondremos que la superficie de la placa pintada de negro absorbe toda la energía solar que recibe, en cada segundo I·A
Supondremos aplicable la ley de enfriamiento de Newton, por lo que la placa pierde en cada segundo una energía.
αS(T-T0)
Donde T es la temperatura de la placa, S es el area de la placa en contacto con el ambiente y α es un parametro a determinar experimentalmente.
La variación de la temperatura T de la placa con el tiempo se obtiene integrando la ecuación diferencial de primer orden

donde m=ρAe es la masa dela placa y c es el calor específico y ρ la densidad del material que esta hecha la placa.

Integramos la ecuación diferencial de primer orden con la condición inicial siguiente: en el instante t=0, la temperatura de la placa es T0.

Al cabo de un tiempo muy grande t→∞ la placa alcanza la maxima temperatura T∞.
Enfriamiento de la placa
Al cabo de un cierto tiempo t, la placa alcanza una temperatura Tf y en ese momento, se deja de iluminar, la placa se enfría.  La ley de enfriamiento de Newton es

Resolvemos la ecuación diferencial con la siguiente condición inicial: en el instante t=0 (ponemos el contador de tiempo a cero), la temperatura de la placa es Tf
T=T0 Tf-T0)exp(-kt)
La temperatura disminuye exponencialmente con el tiempo hasta que en un tiempo muy grande t→∞ la temperatura de la placa se iguala a la temperatura ambiente T0.
Las ecuaciones calentamiento y enfriamiento de la placa son similares a las de la carga y descarga de un condensador.
Actividades
Se introduce
La intensidad de la energía de la radiación solar que ilumina la placa en W/m2 actuando en la barra de desplazamiento titulada Intensidad sol
La temperatura ambiente T0 en grados centígrados, actuando en la barra dedesplazamiento titulada T. ambiente.
El espesor de la placa e, en mm en el control de edición titulado Espesor
El material de la placa es aluminio ρ=2700 kg/m3 y c=880 J kgºC)
Se pulsa el botón titulado Empieza
La placa se calienta e incrementa su temperatura durante 20 minutos=1200 s hasta alcanzar la temperatura final Tf. Después se deja de iluminar la placa y esta se enfría.
En color rojo se dibuja la curva de calentamiento y en color azul la de enfriamiento.
La línea de puntos de color rojo es la asíntota horizontal T∞ de la curva que describe el calentamiento de la placa.
Ejemplo:
Intensidad de la radiación solar  I=700 W/m2
Temperatura ambiente T0=20ºC
Espesor de la placa e=2 mm
Material aluminio: ρ=2700 kg/m3 y c=880 J/(kgºC)
Se ilumina la placa, al cabo de 1200 s alcanza una temperatura de Tf=71.3 ºC
Se deja de iluminar la placa, se pone el contador de tiempo a cero, y al cabo de t=1000 s la temperatura ha bajado a 23.2 ºC
Conocida la temperatura inicial Tf =71.3º y al cabo de un tiempo t=1000 s, T=23.2 durante el enfriamiento calculamos la constante k.
T=T0+(Tf-T0)exp(-kt)
23.2=20+(71.3-20)exp(-k·1000)

La maxima temperatura que alcanza la placa cuando se ilumina indefinidamente t→∞ es


Política de privacidad