Consultar ensayos de calidad


Los grandes medidores del tiempo y del espacio






El Museo de Alejandría se transformó en el centro cultural del mundo antiguo y a él asistieron grandes científicos a enseñar y aprender.


Uno de los más notables fue Herón (aparentemente hubo en Alejandría dos científicos llamados así, uno vivió poco después de la fundación del Museo y otro 300 años después) quien o quienes construyeron relojes mecánicos movidos por agua. Uno de los grandes descubrimientos de Herón fue la primera máquina de vapor construida por el hombre. El vapor se produce al calentar una caldera con agua y de ahí pasa, por medio de un tubo, a una esfera metálica que puede girar y que contiene dos chiflones por los que sale el vapor como se muestra en la figura 5. La esfera gira por el mismo principio por el que se mueven los cohetes o un globo al que se le escapa el aire, la ley de la acción y la reacción.





[pic]

Figura 5. Máquina de vapor ideada por Herón de Alejandría.

Herón construyó un mecanismo que abría las puertas de un templo al prender unahoguera, empleando el principio, por él descubierto, de que el aire al calentarse aumenta de volumen (Figura 6). Al prender un fuego sobre el recipiente superior que contiene aire, éste se expande y pasa al recipiente inferior que contiene agua, a la que obliga a pasar, por medio de un sifón, a otro recipiente que por su aumento de peso, abre las puertas. Al apagarse el fuego, el aire se enfría y se contrae, el líquido regresa a su recipiente original y el peso de la derecha cierra nuevamente las puertas. En sus libros describe una máquina que se empleaba para fabricar tornillos.



[pic]


Figura 6. Mecanismo de Herón de Alejandría para abrir y cerrar las puertas de un templo por medio del fuego, empleando el principio descubierto por él, de que el aire, al calentarse, aumenta de volumen.

Otro gran científico fue Ctesibus, quien diseñó un órgano que trabajaba comprimiendo el aire de un tanque, inyectándolo en el agua por medio de un émbolo; una máquina que producía agua a presión y que se empleaba para apagar incendios, y un cañón que empleaba aire comprimido. También perfeccionó la clepsidra egipcia, o sea el reloj de agua (Figura 7), que consistía en un tanque alimentado por un flujo constante de agua en el que flotaba un cuerpo con un indicador que marcaba en un cilindro graduado la hora del día o de la noche; cada uno de ellos se dividía en 12 horas. El cilindro se podía ajustar para el verano, haciendo más grandes las horas del día y más pequeñas las de la noche y lo contrario en el invierno. Tuvieron que pasar casi dos mil años paraque se hicieran relojes más precisos al descubrir Galileo las leyes del péndulo y que Huygens las aplicara para construir relojes.




[pic]
Figura 7. Clépsidra egipcia o reloj de agua de Ctesibus.

Grandes sabios que trabajaron en el Museo fueron los geómetras Euclides, Apolonio y Arquímedes, este último fue además un físico e ingeniero notable que estudió en el Museo y regresó a su ciudad natal Siracusa. Descubrió el llamado principio de Arquímedes, que nos dice que todo cuerpo sumergido en un líquido pierde tanto peso como el peso de líquido desalojado. Empleando este principio y una balanza pudo encontrar las cantidades de oro y plata que contenía la corona del rey Hierón de Siracusa. Diseñó el llamado tornillo de Arquímedes que permite subir agua al girar un tornillo colocado dentro de un tubo (Figura 8). Desarrolló las leyes de la flotación de los cuerpos y determinó con precisión la relación del perímetro de un círculo a su diámetro o sea el número pi (π). Para calcular las áreas y volúmenes de diversos cuerpos geométricos desarrolló el concepto de límite, que 2,000 años después fuera empleado por Newton y Leibniz en el cálculo diferencial e integral.



[pic]

Figura 8. Tornillo de Arquímedes de Siracusa. Se empleaba para subir el agua.

El astrónomo más notable de la Antigüedad fue Aristarco, quien nació en la isla de Samos y fue a Alejandría a estudiar y trabajar. Consideraba que los planetas y la Tierra giraban alrededor del Sol. Observando los eclipses de Luna, en los que la Tierra proyecta su sombra en la Luna y midiendo elradio de esta sombra en relación al radio de la Luna, encontró que la Tierra era tres veces mayor que la Luna (en realidad, el diámetro de la Tierra es 3.7 veces mayor). También ideó un método para encontrar cuántas veces es mayor la distancia Luna-Sol que la distancia Tierra-Luna, aunque por no contar con instrumentos precisos para medir ángulos, su resultado no fue muy bueno, en todo caso encontró que el Sol está mucho más lejos de nosotros que la Luna (20 veces en vez de 389 que es el valor correcto). El método consistió en observar el ángulo que forma desde la Tierra, una visual al Sol con una visual a la Luna cuando la luz del Sol ilumina exactamente la mitad observable de ésta. En esta condición se forma un triángulo rectángulo, con vértice de 90 grados en la Luna. Como el Sol está mucho más lejos que la Luna, el ángulo a medir es cercano a los 90 grados y se necesitaría un anteojo que pudiera medir minutos de ángulo. De todos modos, el método es correcto y Aristarco encontró que el Sol está mucho más lejos de nosotros que la Luna.


Otro gran astrónomo del Museo de Alejandría fue Eratóstenes, quien tuvo a su cargo la famosa Biblioteca. Hizo un mapa del mundo conocido, desde las Islas Británicas a Ceilán y del Mar Caspio a Etiopía. En astronomía fue el primer hombre que midió el perímetro de la Tierra, calculándole 250 000 estadios (Figura 9). No se conoce con precisión el equivalente de un estadio, pero es de 160 metros aproximadamente, de ahí se obtiene un perímetro de la Tierra cercano a los 40 000 kilómetros. Siena (hoy Asuán) seencuentra prácticamente sobre la línea del Trópico de Cáncer y por lo tanto, hay un día al año en que, al medio día, una varilla vertical no proyecta sombra, ese mismo día, a la misma hora, una varilla en Alejandría, que se encuentra 770 kilómetros al norte, proyectaba una sombra de manera que la línea que iba del extremo de la varilla al extremo de la sombra, formaba un ángulo de 7 grados, con la varilla: a cada grado corresponden 770 entre 7 igual a 110 kilómetros; a la circunferencia de la Tierra (360 grados) corresponderán: 360 grados por 110 kilómetros igual a 40 000 kilómetros.



[pic]


Figura 9. Método de Eratóstenes de Alejandría para determinar las dimensiones de la Tierra, observando la sombra de una varilla en Siena (hoy Asuán) y en Alejandría.


Conocido el tamaño de la Tierra, por el método de Aristarco se calculó el de la Luna y sabiendo que su diámetro equivale a medio grado de ángulo, se puede determinar fácilmente su distancia a la Tierra.


Poco tiempo después, Roma conquistó los países del Mediterráneo, asimiló sus descubrimientos y su tecnología y los usó ampliamente, pero en los siglos que duró el Imperio romano su contribución al desarrollo de la ciencia y la tecnología fue casi nulo y siguió la política de que si quería producir mayor cantidad de un artículo, bastaba con usar más esclavos. Por otro lado, los países sojuzgados perdieron su capacidad de inventiva, lo que produjo que durante más de mil años no se desarrollaran en Europa nuevos materiales ni se hicieran descubrimientos importantes.


Los romanosfueron grandes ingenieros. Empleando la tecnología que adquirieron de otros pueblos construyeron imponentes acueductos, caminos, barcos, edificios, monumentos, teatros, estadios, circos y puentes. Muchas de estas construcciones pueden aún admirarse.


De los griegos copiaron, para usos militares, sus barcos, la catapulta y la ballesta. Para la agricultura emplearon el tornillo de Arquímedes y la rueda de agua. En escritos de esa época, se habla de un barco movido por animales, pero que probablemente nunca se construyó (Figura 10). También emplearon la rueda o turbina movida por una corriente de agua.



[pic]

Figura 10. Esquema de un barco movido por animales, citado en escritos de época.
En la construcción de sus edificios, los romanos empleaban la grúa mecánica. De una escultura de piedra se hizo el esquema que se muestra en la figura 11.

[pic]


Figura 11. Esquema de una grúa romana, tomado de una escultura en piedra.


Política de privacidad