Consultar ensayos de calidad


Electromagnetismo - Historia, Michael Faraday, James Clerk Maxwell, Electrostatica, Campoeléctrico de cargas puntuales, Líneas de fuerza de una barra magnética



-------- ----- ------ ----- ----- ------
Electromagnetismo

El electromagnetismo es una rama de la física que estudia y unifica los fenómenos eléctricos y magnéticos en una sola teoría, cuyos fundamentos fueron sentados por Michael Faraday y formulados por primera vez de modo completo por James Clerk Maxwell. La formulación consiste en cuatro ecuaciones diferenciales vectoriales que relacionan el campo eléctrico, elcampo magnético y sus respectivas fuentes materiales (corriente eléctrica, polarización eléctrica y polarización magnética), conocidas como ecuaciones de Maxwell.
El electromagnetismo es una teoría de campos; es decir, las explicaciones y predicciones que provee se basan en magnitudes físicas vectoriales o tensoriales dependientes de la posición en el espacio y del tiempo. El electromagnetismo describe losfenómenos físicos macroscópicos en los cuales intervienencargas eléctricas en reposo y en movimiento, usando para ellocampos eléctricos y magnéticos y sus efectos sobre las sustancias sólidas, líquidas y gaseosas. Por ser una teoría macroscópica, es decir, aplicable sólo a un número muy grande de partículas y a distancias grandes respecto de las dimensiones de éstas, el electromagnetismo no describe los fenómenos atómicos y moleculares, para los que es necesario usar lamecanica cuantica.


El electromagnetismo considerado como fuerza es una de las cuatro fuerzas fundamentales del universo actualmente conocido.
-------- ----- ------ -------- ----- ------ ----- ----- --------- ----- --------
Historia
Artículo principal: Historia del electromagnetismo.
Desde la antigua Grecia se conocían los fenómenos magnéticos y eléctricos pero no es hasta inicios del siglo XVII donde se comienza a realizar experimentos y a llegar a conclusiones científicas de estos fenómenos.1 Durante estos dos siglos, XVII yXVIII, grandes hombres de ciencia como William Gilbert, Otto von Guericke, Stephen Gray, Benjamin Franklin, Alessandro Voltaentre otros estuvieron investigando estos dos fenómenos de manera separada y llegando a conclusiones coherentes con sus experimentos.

Michael Faraday
A principios del siglo XIX Hans Christian Ørsted encontró evidencia empírica de que los fenómenos magnéticos y eléctricos estaban relacionados. De ahí es que los trabajos de físicos como André-Marie Ampère, William Sturgeon, Joseph Henry,Georg Simon Ohm, Michael Faraday en ese siglo, son unificados por James Clerk Maxwell en 1861 con un conjunto de ecuaciones que describían ambos fenómenos como uno solo, como un fenómeno electromagnético.1



James Clerk Maxwell.
Las ahora llamadas ecuaciones de Maxwelldemostraban que los campos eléctricos y los campos magnéticos eran manifestaciones de un solo campo electromagnético. Ademas describía la naturaleza ondulatoria de la luz, mostrandola como una onda electromagnética.2 Con una sola teoría consistente que describía estos dos fenómenos antes separados, los físicos pudieron realizar varios experimentos prodigiosos e inventos muy útiles como la bombillaeléctrica por Thomas Alva Edison o el generador de corriente alterna por Nikola Tesla.3 El éxito predicitivo de la teoría de Maxwell y la búsqueda de una interpretación coherente de sus implicaciones, fue lo que llevó a Albert Einstein a formular suteoría de la relatividad que se apoyaba en algunos resultados previos de Hendrik Antoon Lorentz y Henri Poincaré.
En la primera mitad del siglo XX, con el advenimiento de la mecanica cuantica, el electromagnetismo tenía que mejorar su formulación con el objetivo de que fuera coherente con la nueva teoría. Esto se logró en la década de 1940 cuando se completó una teoría cuantica electromagnética o mejor conocida comoelectrodinamica cuantica.
-------- ----- ------ ----- ----- ------
Electrostatica
Artículo principal: Electrostatica.

Un electroscopio usado para medir la carga eléctrica de un objeto.
Cuando hablamos deelectrostatica nos referimos a los fenómenos que ocurren debido a una propiedad intrínseca y discreta de la materia, la carga, cuando es estacionaria o no depende del tiempo. La unidad de carga elemental, es decir, la mas pequeña observable, es la carga que tiene el electrón.4Se dice que un cuerpo esta cargado eléctricamente cuando tiene exceso o falta de electrones en losatomos que lo componen. Por definición el defecto de electrones se la denomina carga positiva y al exceso carga negativa.5 La relación entre los dos tipos de carga es de atracción cuando son diferentes y de repulsión cuando son iguales.
La carga elemental es una unidad muypequeña para calculos practicos, es por eso que en el sistema internacional a la unidad de carga eléctrica, el culombio, se le define como la cantidad de carga de 6 x 1018 electrones.4 El movimiento de electrones por un conductor se denomina corriente eléctrica y la cantidad de carga eléctrica que pasa por unidad de tiempo se la define comointensidad de corriente. Se pueden introducir mas conceptos como el de diferencia de potencial o el de resistencia, que nos conduciría ineludiblemente al area de circuitos eléctricos, y todo eso se puede ver con mas detalle en el artículo principal.
El nombre de la unidad de carga se debe a Coulomb quien en1785 llegó a una relación matematica de la fuerza eléctrica entre cargas puntuales, que ahora se la conoce como ley de Coulomb

Entre dos cargas puntuales  y  existe una fuerza de atracción o repulsión  que varía de acuerdo al cuadrado de la distancia  entre ellas y de dirección radial ; y  es una constante conocida como permitividad eléctrica.
Las cargas elementales al no encontrarse solas se las debe tratar como una distribución de ellas. Es por eso que debe implementarse el concepto de campo, definido como una región del espacio donde existe una magnitud escalar o vectorialdependiente o independiente del tiempo. Así el campo eléctrico  esta definido como la región del espacio donde actúan las fuerzas eléctricas. Su intensidad se define como el límite al que tiende la fuerza de una distribución de carga sobre una carga positiva que tiende a cero, así

Campoeléctrico de cargas puntuales.

Y así finalmente llegamos a la expresión matematica que define el campo eléctrico

Es importante conocer el alcance de este concepto de campo eléctrico, éste nos brinda la oportunidad de conocer cual es su intensidad y qué ocurre con una carga en cualquier parte de dicho campo sin importar el desconocimiento de qué lo provoca.6
Una forma de obtener qué cantidad de fuerza eléctrica pasa por cierto punto o superficie del campo eléctrico es que se ideó el concepto de flujo eléctrico. Este flujo eléctrico  se define como la suma de la cantidad de campo que atraviesa un area determinada, así:

El matematico y físico, Carl Friedrich Gauss, demostró que la cantidad de flujo eléctrico en un campo es igual al cociente de la carga encerrada por la superficie en la que se calcula el flujo, , y la permitividad eléctrica,. Esta relación se conoce como ley de Gauss
(1)
Véanse también: Carga eléctrica, Ley de Coulomb, Campo eléctrico, Potencial eléctrico y Ley de Gauss
-------- ----- ------ ----- ----- ------
Magnetostatica
Artículo principal: Magnetostatica.

Líneas de fuerza de una barra magnética.
No fue sino hasta el año de1820, cuandoHans Christian Ørsteddescubrió que el fenómeno magnético estaba ligado al eléctrico, que se obtuvo una teoría científica para el magnetismo.7 La presencia de una corriente eléctrica, o sea, de un flujo de carga debido a una diferencia de potencial, genera una fuerza magnéticaque no varía en el tiempo. Si tenemos una carga auna velocidad , ésta generara un campo magnético  que es perpendicular a la fuerza magnética inducida por el movimiento en esta corriente, así:

Para determinar el valor de ese campo magnético, Jean Baptiste Biot en 1820,8 dedujo una relación para corrientes estacionarias, ahora conocida como ley de Biot-Savart:

Donde  es un coeficiente de proporcionalidad conocido comopermeabilidad magnética,  es la intensidad de corriente, el es el diferencial de longitud de la corriente y  es la dirección de la corriente. De manera mas estricta,  es la inducción magnética, dicho en otras palabras, es el flujo magnético por unidad de area. Experimentalmente se llegó a la conclusión que las líneas de fuerza de campos magnéticos eran cerradas, eliminando la posibilidad de un monopolo magnético. La relación matematica se la conoce como ley de Gauss para el campo magnético
(2)
Ademas en la magnetostatica existe una ley comparable a la de Gauss en la electrostatica, la ley de Ampère. Ésta ley nos dice que la circulación en un campo magnético es igual a la densidad de corriente que exista en una superficie cerrada

Cabe indicar que esta ley de Gauss es una generalización de la ley de Biot-Savart. Ademas que las fórmulas expresadas aquí son para cargas en el vacío, para mas información consúltese los artículos principales.
Véanse también: Ley de Ampère, Corriente eléctrica, Campo magnético, Ley de Biot-Savart y Momento magnético dipolar
-------- ----- ------ ----- ----- ------
Electrodinamica clasica
Artículoprincipal: Electrodinamica.
Hasta el momento se han estudiado los campos eléctricos ymagnéticos que no varían con el tiempo. Pero los físicos a finales del siglo XIX descubrieron que ambos campos estaban ligados y así un campo eléctrico en movimiento, una corriente eléctrica que varíe, genera un campo magnético y un campo magnético de por si implica la presencia de un campo eléctrico. Entonces, lo primero que debemos definir es la fuerza que tendría una partícula cargada que se mueva en un campo magnético y así llegamos a la unión de las dos fuerzas anteriores, lo que hoy conocemos como la fuerza de Lorentz
(3)
Entre 1890 y 1900 Liénard y Wiechert calcularon el campo electromagnético asociado a cargas en movimiento arbitrario, resultado que se conoce hoy como potenciales de Liénard-Wiechert.
Por otro lado, para generar una corriente eléctrica en un circuito cerrado debe existir una diferencia de potencial entre dos puntos del circuito, a ésta diferencia de potencial se la conoce comofuerza electromotriz o fem. Ésta fuerza electromotriz es proporcional a la rapidez con que el flujo magnético varía en el tiempo, esta ley fue encontrada por Michael Faraday y es la interpretación de la inducción electromagnética, así un campo magnético que varía en el tiempo induce a un campo eléctrico, a una fuerza electromotriz. Matematicamente se representada como:
(4)
En un trabajo del físico James Clerk Maxwell de 1861 reunió las tres ecuaciones anteriormente citadas (1), (2) y (4) e introdujo el concepto de una corriente dedesplazamiento como una densidad de corriente efectiva y llegó a la última de las ecuaciones, la ley de Ampère generalizada (5), ahora conocidas como ecuaciones de Maxwell:
(5)
Las cuatro ecuaciones, tanto en su forma diferencial como en la integral aquí descritas, fueron las revisiones hechas por Oliver Heaviside. Pero el verdadero poder de éstas ecuaciones, mas la fuerza de Lorentz (3), se centra en que juntas son capaces de describir cualquier fenómeno electromagnético, ademas de las consecuencias físicas que posteriormente se describiran.9

Esquema de una onda electromagnética.

La genialidad del trabajo de Maxwell es que sus ecuaciones describen un campo eléctrico que va ligado inequívocamente a un campo magnético perpendicular a éste y a la dirección de su propagación, éste campo es ahora llamado campo electromagnético.10 Ademas la solución de éstas ecuaciones permitía la existencia de una onda que se propagaba a lavelocidad de la luz, con lo que ademas de unificar los fenómenos eléctricos y magnéticos la teoría formulada por Maxwell predecía con absoluta certeza los fenómenos ópticos.
Así la teoría predecía a una onda que, contraria a las ideas de la época, no necesitaba un medio de propagación; la onda electromagnética se podía propagar en el vacío debido a la generación mutua de los campos magnéticos y eléctricos. Esta onda a pesar de tener una velocidad constante, la velocidad de la luz c, puede tener diferente longitud de onda y consecuentemente dicha onda transporta energía. La radiaciónelectromagnéticarecibe diferentes nombres al variar su longitud de onda, comorayos gamma, rayos X, espectro visible, etc.; pero en su conjunto recibe el nombre de espectro electromagnético.

Espectro electromagnético.
Véanse también: Fuerza de Lorentz, Fuerza electromotriz, Ley de Ampère, Ecuaciones de Maxwell, Campo electromagnético,Radiación electromagnética y Espectro electromagnético
Formulación covariante
Artículo principal: Tensor de campo electromagnético.
Clasicamente, al fijar un sistema de referencia, se puede descomponer los campos eléctricos y magnéticos del campo electromagnético. Pero al tener a un observador con movimiento relativo respecto al sistema de referencia, éste medira efectos eléctricos y magnéticos diferentes de un mismo fenómeno electromagnético. El campo eléctrico y la inducción magnética a pesar de ser elementos vectoriales no se comportan comomagnitudes físicas vectoriales, por el contrario la unión de ambos constituye otro ente físico llamado tensor y en este caso el tensor de campo electromagnético.11
Así, la expresión para el campo electromagnético es:

Y las expresiones covariantes para las ecuaciones de Maxwell (7) y la fuerza de Lorentz (6) se reducen a:
(6)
(7) 
-------- ----- ------ ----- ----- ------
Electrodinamica cuantica

Diagrama de Feynman mostrando la fuerza electromagnética entre dos electrones por medio del intercambio de un fotón virtual.
Artículo principal: Electrodinamica cuantica.
Posteriormente a la revolución cuantica de iniciosdel siglo XX, los físicos se vieron forzados a buscar una teoría cuantica de lainteracción electromagnética. El trabajo de Einstein con el efecto fotoeléctrico y la posterior formulación de la mecanica cuanticasugerían que la interacción electromagnética se producía mediante el intercambio de partículas elementales llamadasfotones. La nueva formulación cuantica lograda en la década de los años 40 del siglo XX describía la interacción de este fotónportador de fuerza y las otras partículas portadoras de materia.12
La electrodinamica cuantica es principalmente una teoría cuantica de campos renormalizada. Su desarrollo fue obra de Sinitiro Tomonaga, Julian Schwinger, Richard Feynman y Freeman Dysonalrededor de los años 1947 a 1949.13 En la electrodinamica cuantica, la interacción entre partículas viene descrita por unlagrangiano que posee simetría local, concretamente simetría de gauge. Para la electrodinamica cuantica, el campo de gaugedonde las partículas interactúan es el campo electromagnético y esas partículas son los fotones.13
Matematicamente, el lagrangiano para la interacción entrefermiones mediante intercambio de fotones viene dado por

Donde el significado de los términos son:
 son las matrices de Dirac.
 y  son los campos o espinores de Dirac que representan las partículas cargadas eléctricamente.
 es la derivada covariante asociada a la simetría gauge.
 el operador asociado al potencial vector covariante del campo electromagnético y
 el operador de campo asociadotensor de campo electromagnético.


Política de privacidad