Estructura de átomos y moléculas
Objetivos
Conocer los órdenes de magnitud de los parámetros atómicos y moleculares;
observar los orbitales y geometrías moleculares y analizar una curva de energía
potencial en función de la distancia.
A. Átomos: energías de ionización (Kcal/mol)
|Elemento |Multiplicidad |Carga |Energia |Multiplicidad |
|N2 |-9335 |-9550 |-215 |-225,8 |
|O2 triplete |-14579 |-14726 |-147 |-119 |
|O2 singulete |-14579 |-14698 |-118 |No encontrada |
|F2 |-22244 |-22304 |-60 |-37,5 |
Análisis de la tendencia observada:
La energía de unión es la diferencia entre la energía potencial de dos átomos
infinitamente separados y la que presenta la molécula diatómica. Cuanto más negativa sea la energía de unión, más estable es la
molécula, ya que los átomos tenderán a permanecer unidos porque su energía
potencial es menor que cuando están infinitamente alejados. En los datos
obtenidos se observa que la molécula de N2 es la más estable de la serie, lo
cual se explica por la presencia de un triple enlace
entre los átomos de N. El F2 aparece como
el menos estable, porque sólo tiene un enlace simple entre ambos átomos.
Es claro que las energías de unión de las dos variantes de O2 presentan un valor intermedio a las de F2 y N2 porque en este caso hay
un doble enlace estabilizando la molécula. Pero también se
debeanalizar la diferencia de energía de unión entre el O2 singulete
(multiplicidad de spin igual a 1) y el triplete (multiplicidad igual a 3).
Evidentemente, el triplete es la forma más estable de O2, ya
que su energía de unión es más negativa. Esto se debe a que dos de sus
electrones más externos se encuentran distribuidos uno en cada orbital del
subnivel p, de acuerdo al principio de Aufbau del llenado de los orbitales en
orden creciente de energía. Esto significa que el O2 triplete es el estado
fundamental del
O2. Por otro lado, el O2 singulete es un estado
excitado del
O2, ya que los electrones antes mencionados se encuentran apareados en un mismo
orbital, para lo cual es necesario entregarle energía a la molécula.
Gráficos de energía potencial en función de la distancia
1) Curva del N2
Gráfico A. Curva de la energía potencial en función de la distancia para dos
átomos de nitrógeno.
2) Curva del He2
Gráfico B. Curva de la energía potencial en función de la distancia para dos
átomos de helio.
B. Geometría molecular
|Sistema |Distancia calculada |Distancias tabuladas*|Angulos calculados |Angulos
TREPEV |Angulos tabulados* |
(Çs) |(Çs)
|NH3 |1,01 |1,016 |109,471° |107° |106,7° |
|CH4 |1,11162 |1,06 - 1,12 |109,47° |109,5°
|PCl5 |2,07472 120°, 90° |120°, 90°
|SF6 |1,5393996 180°, 90°|90°
|CO3 2- |1,29694 120° |120°
Conclusiones:
En primer lugar podemos destacar que el avance computacional fue una gran
revelación que nos permite hoy en día corroborar las teorías atómicas y
moleculares. Cuando calculamos la energía de ionización de un
átomo los valores obtenidos son muy coherentes con las deducciones que podemos
hacer cualitativamente. La energía de ionización de los elementos
representativos que analizamos aumenta de izquierda a derecha en la tabla
periódica y esto se debe a que la carga nuclear también aumenta en el mismo
sentido y atrae con mayor fuerza a los electrones, lo que hace que se necesite
mucha más energía para excitarlos de su nivel fundamental.
Por otro lado, observamos que en las uniones moleculares,
existe una distancia precisa a la cual los átomos se sienten cómodos y pueden
permanecer unidos. Podemos comprobar las teorías de unión y repulsión
con los datos calculados computacionalmente. Cuando dos
átomos se encuentran a una distancia muy lejana entre sí, estos continúan
separados ya que la atracción que ejerce cada núcleo sobre el átomo vecino es
muy débil. En contraste, cuando los átomos están demasiado cerca uno del
otro, no alcanza con la atracción de cada núcleo para mantenerlos unidos, por
el contrario, la repulsión electrónica se hace tanto más apreciable, que los
átomos se vuelven inestables.
Asimismo, podemos comparar las geometrías calculadas
experimentalmente, y las geometrías deducidas teóricamente. En este caso hallamos que las diferencias tampoco son muy
grandes, por lo que concluimos que el grado de error es mínimo, tanto en las
distancias de enlace calculadas y tabuladas, como en losángulos calculados, tabulados, y
los ángulos TREPEV.
Con respecto a las curvas de energía potencial podemos analizar ambas por
separadas ya que éstas expresan la energía de moléculas diferentes y por lo
tanto sus comportamientos y propiedades también lo son
Gráfico A:
Esta curva muestra cómo, cuando la distancia entre los átomos de N tiende a
infinito, poseen una determinada energía potencial, pero al ir acercándose,
esta energía disminuye hasta llegar a un mínimo cuando se alcanza la distancia
de enlace. Esto se debe a que, como se muestra en la tabla B, los átomos
formando la molécula poseen menor energía que los átomos infinitamente
separados, es decir, que son más estables.
Sin embargo, si la distancia continúa disminuyendo, la
energía potencial aumenta bruscamente, ya que las nubes electrónicas comienzan
a solaparse, por lo que aumenta la repulsión electrónica.
Gráfico B
En este caso, se observa que los átomos de He infinitamente separados tienen
menor energía potencial que cuando están más cerca, y en ningún momento la
energía alcanza un mínimo relativo. Esto se debe a que el He ya posee su
orbital 1s completo, por lo que no requiere establecer una unión covalente con
otro átomo para ser más estable. También se observa que cuando la distancia es
muy pequeña la energía aumenta por el mismo fenómeno de repulsión electrónica
que en el caso del
N2.
Bibliografía
a–S Página web de la materia Química Inorgánica.
a–S Wikipedia
a–S Chang
----- ----- -------------
Átomo
Ion
Tabla A. Cálculo de la energía de ionización de los elementos del segundo
período de la tabla periódica, partiendo de las energías de los respectivos
átomos neutros y cationes.
Tabla B. Cálculo de la energía de unión de distintas
moléculas diatómicas homonucleares.
[pic]
[pic]