Consultar ensayos de calidad
CalorCALOR
La ciencia no se detiene; nuevosexperimentos se llevan a cabo y surgen nuevas teorías.Durante el último medio siglo dos objetivos principales han sido integrar las diferentes fuerzas en una teoría y comprender la naturaleza de las partículas. En esta búsqueda constante de la 'teoría del todo', incluso la distinción entre fuerzas y partículas comienza a desaparecer, pero estos acontecimientos están más allá del alcance de este libro. Radiactividad y la fisión Las masas atómicas relativas se muestran en la Figura 4,20 revelan que el número de protones y neutrones tienden a ser iguales en los átomos más ligeros, pero un exceso de neutrones se desarrolla gradualmente como los átomos se hacen más pesados (como por ejemplo, en cobre, más arriba].Podemos ver por qué estas deben ser necesarias. Debido a que cada protón repele todo otro protón, la energía necesaria para mantener a todos al mismo tiempo aumenta abruptamente cuando su número aumenta. Los neutrones no, por supuesto, la experiencia de la fuerza eléctrica, y todos los nucleones (protones y neutrones) se sienten atraídos el uno al otro por la fuerza nuclear fuerte. por lo que cualquier aumento en el número de neutrones ayuda a mantener la estabilidad frente a la tendencia creciente de los protones para llegar a romperse.Finalmente, más allá del elemento de bismuto, con 83 protones y 126 neutrones, no hay núcleos más estables.Todos los elementos más allá de bismuto son radioactivos: sus núcleos emiten espontáneamente partículas de alta energía cargadaseléctricamente. cambian en diferentes núcleos en el proceso.Si esto es así. scómo es que nos encontramos con uranio (número atómico 92] que todavía existen en la corteza de la Tierra?La respuesta es que se va desgastando, pero La presencia de radiactividad muestra que los núcleos pueden ser inestables, pero es la fisión que ofrece la perspectiva de un continuo nos proveen de energía.En la fisión, a diferencia de la radiactividad, el núcleo se divide en dos partes aproximadamente iguales.Esto libera una gran cantidad de energía cuando los dos grupos apretados de protones llegar a romperse. sólo hay una forma natural de material fisible: el isótopo uranio-235.También es radiactivo. por lo que si su nucleo puede desintegrarse ya sea por el camino emitiendo una sola. mucho más ligero o por medio de partícula de aproximadamente división. .Ambos procesos liberar energía, y ambos se producen naturalmente en muy lento. Las diferencia fundamental es que mientras que no lo afecta la radioactividad mucho, hemos descubierto cómo controlar la velocidad de fisión. Puede ha 'aumentado a miles de millones de veces la tasa natural, con un correspondiente en la velocidad a la cual la energía es sed, relea (véanse los capítulos 10 y 11). El núcleo de un átomo. con sus protones estrechamente empaquetadas. es un almacén de energía extremadamente compacta, y la energía liberada en la fisión de un núcleo es muchos millones de veces mayorque la liberada en la combustión de una molécula '.Como se ha mencionado anteriormente. más de lo I S en energía eléctrica hecho rel Política de privacidad | |||||||||||
|