1. ¿Qué es el planeta tierra?
Es un sistema viviente , constituido por dos
subsistemas (el fisiso que es el flujo de energía y el biológico
que es el flujo de materia
2. ¿De qué otra manera de le conoce al planeta
tierra?
Gaia o planeta azul
3. ¿En la litosfera que se desarrolla?
las placas tectónicas donde se concentran los
fenómenos geológicos
4. ¿Explica que es homeostasis?
Equilibrio y regulación de la temperatura del planeta
5. ¿Qué permite la mantener la biodiversidad?
La estabilidad y equilibrio de los ecosistemas
6. ¿Explica que es el subsistema físico?
es el flujo de energía emitida por los rayos del sol que permiten la
fotosíntesis
7. Menciona cuales son los consumidores primarios y los
consumidores secundarios.
Primarios: herbívoros
Secundarios: carnívoros
8. ¿En qué consiste la piramide
ecológica?
Denota la disminución de las variables, energía
,biomasa y el numero de individuos
9. ¿Qué es el flujo de energía?
Es la energía solar que genera la fotosíntesis
10. ¿Qué es el ciclo biogeoquimico?
Es la combinación de los procesos biológicos,
geológicos y químicos
11. ¿Qué es el flujo de materia?
Es el intercambio de sustancias químicas en la
biosfera
12. ¿Cual es el proceso del ciclo gaseoso?
Son las sustancias que circulan en la atmosfera
13. Menciona los dosciclos que conforman el ciclo
sedimentario.
Fosforo y azufre
14. ¿En qué consiste el ciclo
hidrológico?
Evaporación , precipitación y gaseoso
15. Menciona cuales fueron los primeros seres vivos sobre la
tierra.
Protozoarios y procariontes
be used to produce hydrogen or methane. In Chapter 7 “Waste to Renewable
Energy: A Sustainable and Green Approach Towards Production of Biohydrogen by
Acidogenic Fermentation”, Mohan provides a detailed review of the state of the
art with regard to biological hydrogen production using waste and wastewater as
substrates with dark fermentation processes. Many biological processes use
mixed cultures operating under non-sterile conditions (e.g. biological hydrogen
and methane production, as discussed above). Watanabe et al. in Chapter 8
“Bacterial Communities in Various Conditions of the Composting Reactor Revealed
by 16S rDNA Clone Analysis and Denaturing Gradient Gel Electrophoresis” demonstrate
the utility of 16S rRNA analysis and denaturing gradient gel electrophoresis
(DGGE) techniques for tracking microbialcommunities within a mixed and changing
culture. Their work uses a composting process, which offers a typically
cost-effective alternative to incineration for the remediation of contaminated
soil. The production of liquid fuel from biomass necessitates the consideration
of various issues such as the effects on the food supply, the rainforest, and
greenhouse gas production, as well as carbon sustainability certiï¬cation.
Some of these issues may require appropriate regulations and in Chapter 9
“Perspectives on Bioenergy and Biofuels”, Scott et al., examine these issues
closely. In addition to its environmental advantages, the use of renewable
energy resources offers the potential for stimulation of the economies of the
nations where they are produced. The potential products of these renewable
materials extend well beyond liquid fuels alone. Owing partly to the enormous
volume of their production, fuels are sold for relatively low prices, and the
successful implementation of renewable fuels depends, at least initially, on
their ability to compete in the marketplace. To this end, it is particularly
important to maximize the efï¬ciency of their production in bioreï¬neries
where secondary products would be derived from the same feedstock as the fuels.
As an example, petroleum reï¬neries have been in operation for over 150 years
and now produce lubricants, plastics, solvents, detergents, etc., all from the
starting crude oil [6]. Similarly, biomass, in addition to being used for the
production of fuels, can be used as a starting material for the production of
other value-addedproducts of microbial bioconversion processes such as
fermentable sugars, organic acids and enzymes. In Chapter 10 “Perspectives on
Chemicals from Renewable Resources”, Scott et al. describe how, with the aid of
biotechnology, Protamylase R generated from starch production, can be used as a
medium for the production of a cynophycin polymer, which is a major source of
arginine and aspartic acid for the production of many industrially useful
compounds including 1 -butanediamine and succinic
acid. In Chapter 11 “Microbial Lactic Acid Production from Renewable
Resources”, Li and Cui describe the production of lactic acid from renewable
resources such as starch biomass, cheese whey etc. Lactic acid has recently
gained attention due its application to the manufacture of biodegradable
polymers. Among other renewable resources, Chapter 12 “Microbial Production of
Potent Phenolic-Antioxidants Through Solid State
Fermentation”, Martin et al. describe the role of agroindustrial residues
including plant tissues rich in polyphenols for the microbial bioconversion of
potent phenolics under solid state
fermentation conditions. Hence, combined with the economy of scale derived from
large reï¬neries, secondary products could be key to
bridging the price gap between fossil fuels and renewables. One critical
advantage of biofuels is their potential to achieve a reduction in greenhouse
gas releases, since the plants from which they are produced derive their carbon
from the atmosphere. The overallbalance of greenhouse gases however, depends in
large measure on the particular feedstocks used and the methods by which they
are produced. Corn ethanol for instance, while being potentially carbon neutral,
is not likely to achieve an overall reduction in greenhouse gas release due to
its requirement for nitrogenous fertilizer and the associated release of
nitrous oxide [7]. An interesting approach to the production of biodiesel is
the use of algae to synthesize oil from the CO2 they capture for growth. Algae
cultivation offers a potential low-cost alternative to physical methods of
carbon sequestration such as pumping liquid CO2 underground or underwater or
chemical methods such as base-mediated capture of CO2 and subsequen
16. ¿Cuales es la regla de la
sustentabilidad?
La productividad debe ser mayor que el consumo
17. Menciona la diferencia entre sustentabilidad y sostenible
Sustentabilidad: quitamos y no reponemos
Sostenibilidad : quitamos y reponemos
18. ¿De qué otra manera el hombre contamina el
planeta no siendo industrial?
Consumismo, acuicultura, ganadería
19. Explica la fotosíntesis
Es la energía solar que transforma las plantas
20. Menciona la diferencia entre un bien y
servicio.
Un bien: son los recursos naturales
Un servicio: son las condiciones que proporcionan los ecosistemas
21. ¿Cual es el principal producto que consume y depende el ser
humano?
Agua H2O
22. Explica en qué consiste el soporte vital
Son aquellos que protegen de los rayos solares ultra violeta
, limpian el aire asi como
el agua y suelo
23. ¿De qué manera se da el agotamiento de los
servicios ambientales?
Por sobrepoblación , huella ecológica
24. ¿En qué consiste el factor limitante y
capacidad de carga?
Dinamica poblacional de las especies como la
erosión y agotamiento de los recursos